• Title/Summary/Keyword: hard body impact

Search Result 24, Processing Time 0.048 seconds

Evaluation of Impact Resistance of Interior Stone Walls Constructed on the ALC Block Wall (ALC 블록 벽체에 시공한 석재 아트월의 내충격성 평가)

  • Ko, Bong-Cheon;Lee, Duck-ju;Kim, Hyun;Chol, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.10-11
    • /
    • 2019
  • Interior stone walls are using commonly in non-bearing lightweight walls of apartments. The stones of interior wall were two types, one is a granite stone, another is a marble stone. Granite stone is attached by the epoxy adhesive and marble stone is attached by dedicated anchor and fastener. The impact resistance test was carried out interior stone walls in accordance with KS F 2613. The test methods included the impact resistance tests by each of soft impact body and hard impact body. The results of the test have proved that interior stone walls can withstand the soft impact bodies and hard impact bodies that are likely to happen in everyday life.

  • PDF

Standardization of Impact Test Methods of Non-bearing Lightweight Wall for Building (건축용 비내력 경량벽체의 내충격성 시험방법의 표준화)

  • Kim, Ki-Jun;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.181-182
    • /
    • 2015
  • The use of non-bearing light weight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Light weight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the impact resistance test method for light weight walls by using the actual impact load obtained through load analysis test in previous studies. The impact resistance test method was divided into the test method that uses soft body and the one that uses hard body. The size of specimen was set up as height 2.4m and width 3.0m. The size and shape of the body followed those used in BS 5234-2 and so on for the compatibility with the test method used overseas. The judgment criteria for impact resistance based on test results were not defined uniformly as the assessment of functional damage can vary depending on the type of material, structural method, purpose of wall, and so on even when the same impact load was applied.

  • PDF

Hard-landing Simulation by a Hierarchical Aircraft Landing Model and an Extended Inertia Relief Technique

  • Lee, Kyu Beom;Jeong, Seon Ho;Cho, Jin Yeon;Kim, Jeong Ho;Park, Chan Yik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.394-406
    • /
    • 2015
  • In this work, an efficient aircraft landing simulation strategy is proposed to develop an efficient and reliable hard-landing monitoring procedure. Landing stage is the most dangerous moment during operation cycle of aircraft and it may cause structural damage when hard-landing occurs. Therefore, the occurrence of hard-landing should be reported accurately to guarantee the structural integrity of aircraft. In order to accurately determine whether hard-landing occurs or not from given landing conditions, full nonlinear structural dynamic simulation can be performed, but this approach is highly time-consuming. Thus, a more efficient approach for aircraft landing simulation which uses a hierarchical aircraft landing model and an extended inertia relief technique is proposed. The proposed aircraft landing model is composed of a multi-body dynamics model equipped with landing gear and tire models to extract the impact force and inertia force at touch-down and a linear dynamic structural model with an extended inertia relief method to analyze the structural response subject to the prescribed rigid body motion and the forces extracted from the multi-body dynamics model. The numerical examples show the efficiency and practical advantages of the proposed landing model as an essential component of aircraft hard-landing monitoring procedure.

The Analysis of Impact at the Fin of High Speed Water-Entry Body (고속입수체의 제어판 충격해석)

  • Nah, Young-In;Lee, Sim-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1026-1033
    • /
    • 2010
  • The analysis of water-entry impact forces acting on the fin shaft of high speed water-entry body is described. During the entry of high speed body into water, the physical phenomenon and flow properties are analyzed. A proper analysis model is established and the method to estimate the flow force which causes impact torque at the fin shaft is described. It is assumed that the fin shaft is damaged by the force which is induced by contacting with cavity wall. The pressure distribution of fin and the maximum torque are estimated and compared with breaking force. Conclusively, it is hard to resist water-entry impact force in terms of the reinforcement of fin shaft. Additionally safe equipment is essentially required.

Characteristics of the Load of Small Hard Body Used for Impact Resistance Test of the Lightweight Wall (경량벽체의 내충격성 시험에 사용되는 경질 충격체의 하중 특성)

  • Choi, Soo-Kyung;Song, Jung-Hyeon;Kim, Sang-Heon;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.350-358
    • /
    • 2014
  • The demand for the lightweight wall has increased as the structure of the multi-unit dwelling has shift to the rahmen structure. The lightweight wall is required to secure certain degree of shock resistance for the structural safety. The study performed the load analysis test for 7 small hard bodies with different masses and shapes and 5 hard materials which applied the impact load on the wall. It was found out from the experiment that different pendulum weight doubled the load maximum even though the shock energy was the same. In addition, the study compared and analyzed the weight of materials and the load of small hard bodies to propose fundamental data for the material design of the lightweight wall.

Influence of the Midsole Hardness on Shock Absorption along the Human Body during Running (달리기 중 신발 중저의 경도가 인체를 따라 흡수되는 충격에 미치는 영향)

  • Lee, Yong-Ku;Kim, Yoon-Hyuk
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • During running, the human body experiences repeated impact force between the foot and the ground. The impact force is highly associated with injury of the lower extremity, comfort and running performance. Therefore, shoemakers have developed shoes with various midsole properties to prevent the injury of lower extremity, improve the comfort and enhance the running performance. The purpose of this study is to investigate influence of midsole hardness on shock absorption along the human body during running. Thirty two expert runners consented to participate in the study and ran at a constant speed with three different pairs of shoes with soft, medium and hard midsole respectively. Using accelerometers we measured the shock absorption from shoe heel to cervical vertebral column. In conclusion, at the shoe heel, shock was the greatest with the hard midsole. However because most shock was absorbed between shoe heel and the knee, notable influence of midsole was not detected upper knee. At shoe heel, regardless of midsole hardness, the shock of younger female was the greatest. The authors expect to apply this result for providing a guideline for utilizing proper midsole hardness for manufacturing age and gender-specific shoe.

Dynamic Response Measurement of the Head Arm Assembly of a Hard Disk Drive by Numerical Analysis and Experiments

  • Parlapalli, Madhusudhana R;Bin, Gu;Dongwei, Shu;Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.22-25
    • /
    • 2008
  • The dynamic response of the head arm assembly (HAA) of a hard disk drive to an impact load was obtained from a 3D non-linear finite element model using ANSYS/LS-DYNA and from experiments using a modified levitation mass method (LMM). In the finite element model, the impact load was created by modeling the mass as a rigid body and making it collide with the HAA. The velocity, displacement, acceleration, and inertial force of the mass were then obtained from the time history data of the finite element analysis. In the LMM, a mass that was levitated with an aerostatic linear bearing, and hence encountered negligible friction, was made to collide with the actuator arm, resulting in a dynamic bending test for the arm. During the collision, the Doppler frequency shift of the laser beam reflected from the mass was accurately measured with an optical interferometer. The velocity, displacement, acceleration, and inertial force of the mass were accurately calculated from the measured time-varying Doppler frequency shift. A good correlation between the experimental data and FEA results was observed. The FEA was also used to investigate the dynamic response of the HAA to impact by different masses.

The Effect of Midsole Hardness of Running Shoe on Fatigue of Lower Extremity Muscles and Impact Force (런닝화의 미드솔 경도가 하지 근육의 피로와 충격력에 미치는 영향)

  • Kim, Eonho;Lim, Kyuchan;Cho, Seunghyun;Lee, Kikwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.3
    • /
    • pp.167-172
    • /
    • 2019
  • Objective: The aim of this study was to investigate the effect of midsole hardness of running shoe on muscle fatigue and impact force during distance running. Method: Ten healthy college recreational runners who were performing distance running at least three times a week participated in this experiment. They were asked to run for 15 minutes in the treadmill at 10 km/h with running shoes having three different types of midsole hardness (Soft, Medium, Hard). EMG signal and insole pressure were collected during the first and last one minute for each running trials. Data were analyzed using a one-way analysis of variance (ANOVA) with repeated measures. Results: Midsole hardness did not affect the consistency of stride length. For the median frequency of the EMG signal, only VL was affected by midsole hardness; that of medium was greater than other midsoles (p<.05). The loading rate of impact forces increased by midsole hardness (p<.01). Conclusion: Although soft midsole could attenuate impact forces at heel contact, it might have a negative effect on the fatigue of muscle which could decelerate the body after heel contact. Therefore, it is necessary to select the optimum hardness of midsole carefully for both reduction impact forces and muscle fatigue.

Finite element analysis of the effects of mouthguard produced by combination of layers of different materials on teeth and jaw (다양한 물성을 혼용하여 제작된 구강보호장치가 치아 및 악골에 미치는 영향)

  • So, Woong-Seob;Lee, Hyun-Jong;Choi, Woo-Jin;Hong, Sung-Jin;Ryu, Kyung-Hee;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.324-332
    • /
    • 2011
  • Purpose: The purpose of this study was to compare the stress distribution of teeth and jaw on load by differentiating property of materials according to each layer of widely used mouthguard. Materials and methods: A Korean adult having normal cranium and mandible was selected to examine. A customized mouthguard was constructed by use of DRUFOMAT plate and DRUFOMAT-TE/-SQ of Dreve Co. according to Signature Mouthguard system. The cranium was scanned by means of computed tomography with 1mm interval. It was modeled with CANTIBio BIONIX/Body Builder program and simulated and interpreted using Alter HyperMesh program. The mouthguard was classified as follows according to the layers. (1) soft guard (Bioplast)(SG) (2) hard guard (Duran)(HG) (3) medium guard (Drufomat)(MG) (4) soft layer + hard layer (SG + HG) (5) hard layer + soft layer (HG + SG) (6) soft layer + hard layer + soft layer (SG + HG + SG) (7) hard layer + soft layer + hard layer (HG + SG + HG) The impact locations on mandible were gnathion, the center of inferior border, and the anterior edge of gonial angle. And the impact directions were oblique ($45^{\circ}$). The impact load was 800 N for 0.1 sec. The stress distribution was measured at maxillary teeth, TMJ and maxilla. The statistics were conducted using Repeated ANOVA and in case of difference, Duncan test was used as post analysis. Results: In teeth and maxilla, the mouthguard contacting soft layer of mandibular teeth presented lowest stress measure and, in contrast, in condyle, the mouthguard contacting hard layer of mandibular teeth presented lowest stress measure. Conclusion: For all impact directions, soft layer + hard layer + soft layer, the mouthguard with three layers which the hard layer is sandwiched between two soft layers, showed relatively even distribution of stress in impact.

Are Falls of Less Than 6 Meters Safe? (6미터 이하 저고도 추락 환자의 안전성 여부)

  • Seo, Young Woo;Hong, Jung Seok;Kim, Woo Yun;Ahn, Ryeok;Hong, Eun Seok
    • Journal of Trauma and Injury
    • /
    • v.19 no.1
    • /
    • pp.54-58
    • /
    • 2006
  • Purpose: The committee on trauma of the american college of surgeons, in its manual resources for optimal care of the injured patients involved in falls from less than 20 feet need not be taken to trauma centers. Because triage criteria dictate less urgency for low-level falls, this classification scheme has demerits for early detection and treatment of serious problems in the emergency room. Methods: A prospective analysis was conducted of 182 patients treated for fall-related trauma from June 2003 to March 2004. Falls were classified as group A (<3 m), group B (${\geq}3m$, <6 m), and group C (${\geq}6m$). Collected data included the patient's age, gender, site and height of fall, surface fallen upon, body area of first impact, body regions of injuries, Glasgow Coma Scale (GCS), Revised Trauma Score (RTS), and Injury Severity Score (ISS). Results: The 182 patients were classified as group A (105) 57.7%, group B (61) 33.5%, and group C (16) 8.8%. There was a weak positive correlation between the height of fall and the patients' ISS in the three groups (p<0.001). There were significant differences in GCS (p=0.017), RTS (p=0.034), and ISS (p=0.007) between group A and B. In cases that the head was the initial impact area of the body, the GCS (p<0.001) and the RTS (p=0.002) were lower, but the ISS (p<0.001) was higher than it was for other type of injuries. Hard surfaces as an impact surface type, had an influence on the GCS (p<0.001) and the ISS (p=0.025). Conclusion: To simply categorize patients who fall over 6 meters as severely injured patients doesn't have much meaning, and though patients may have fallen less than 6 meters, they should be categorized by using the dynamics (impact surface type, initial body - impact area) of their fall.