• Title/Summary/Keyword: harbor design

Search Result 258, Processing Time 0.033 seconds

A Study on Supplement of Harbour and Fishery Design Criteria through the Statistical Characteristics Analysis of Cruise Ship's Specification (크루즈선 주요 제원분석을 통한 항만 및 어항설계기준 개선 연구)

  • Cho, Ik-Soon;Cho, Jang-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.652-660
    • /
    • 2017
  • Recently, the number of tourists using cruise ships in Korea is increasing. and an big cruise ship with an gross tonnage of 160,000 tons or more has entered the domestic ports. Therefore, the government has been making a lot of efforts to confirm the cruise infrastructure for revitalization of the domestic cruise industry. However, there are no standards for cruise ship specifications and water facilities in the domestic port and fishery design standards. Currently, construction of dedicated cruise facilities is under way in major domestic ports. However, due to lack of specifications and domestic standards for cruise ships, it is difficult to design and license special facilities. Therefore, in this study, PIANC rule and domestic harbor and designing standard of fishing port were compared and analyzed in order to present the standard specification of cruise ships. And analyzed the representative linearity of cruises currently being operated. As a result of the ship characteristics analysis, There was a difference in coastal passenger ship in specifications and ship maneuverability. Therefore, in order to design facilities dedicated to cruising, the specifications of the target ship must be included in the domestic design standard. In addition, in order to calculate the scope of the target ship, I applied the coverage rate of 75% to the average specification value of the cruise ship and presented the standards of the cruise ship and the standard of the water area facilities.

Consideration on Ways to Reduce a Edge Pressure at Bottom Plate of Caisson Breakwaters (케이슨 방파제 바닥판 단부 지지력 저감방안에 대한 고찰)

  • Park, Woo-Sun;Lee, Byeong Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.331-339
    • /
    • 2020
  • In this study, ways to reduce the edge pressure at the bottom plate of the caisson breakwater were considered. The water depth, freeboard, design wave height and period, and the location of the center of gravity on the super-structure of the breakwater were selected as key design variables that influence the edge pressure, and analyzed how the edge pressure changes according to the change of this key variables. The pressure distribution formulae suggested in the design standard was applied for the calculation of design wave forces. Based on the wave forces, the required effective self-weight of the super-structure and the minimum width of the caisson were determined to have a safety factor of 1.2 against sliding and overturning. From the results, it was found that the edge pressure rapidly increased as the water depth increased, and could exceed the allowable bearing capacity when it reached a certain water depth which is 20 m within the analysis conditions. It was also confirmed that the edge pressure gradually increased linearly as the freeboard increased, but decreased with the increase of the wave height and period. This edge pressure could be significantly reduced up to more than 20% by moving the center of gravity of the super-structure to the seaside, which is 5% of the caisson width. Based on the analysis results and the recently conducted research results, a method was proposed to reduce the edge pressure that can be used in the design.

Structural Design and Analysis of a Hydraulic Coiling Arm for Offshore Wind-turbine Submarine Cable (해상풍력 해저케이블 하역용 유압식 코일링 암 구조설계 및 해석)

  • Kim, Myung-Hwan;Kim, Dong-Hyun;Oh, Min-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Structural design and analysis of a coiling arm unloading machine for submarine cable have been originally conducted in this study. Three-dimensional CAD modeling process is practically applied for the structural design in detail. Finite element method(FEM) and multi-body dynamics(MBD) analyses are also used to verify the safety and required motions of the designed coiling arm structure. The effective moving functions of the designed coiling arm with respect to rotational and radial motions are achieved by adopting bearing-roller mechanical parts and hydraulic system. Critical design loading conditions due to its self weight, carrying cables, offshore wind, and hydraulic system over operation conditions are considered for the present structural analyses. In addition, possible inclined ground conditions for the installation of the designed coiling arm are also considered to verify overturn stability. The present hydraulic type coiling arm system is originally designed and developed in this study. The developed coiling arm has been installed at a harbor, successfully tested its operational functions, and finished practical unloading mission of the submarine cable.

Reliability Analysis of Caisson Type Quaywall (안벽구조물의 신뢰성 해석)

  • Yoon, Gil-Lim;Kim, Dong-Hywan;Kim, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.498-509
    • /
    • 2008
  • Reliability analyses of Level I, II and III for bearing capacity, overturning and sliding of quaywall are carried out to investigate their safety levels depending upon its failure modes, and sensitivity analyses of each design variable are performed to find their effects on safety levels of quaywall. Reliability indices was 1.416 for both level II and III for case study I, and with 2.201 and 1.880, respectively, for the case study II at the critical loading conditions. Thus we were able to know that Level II (FORM) approach is good enough to use in practical design. Generally, it was found that probabilities of failure of quaywall were higher for sliding and bearing capacity failure modes and lower for overturning failure mode. From sensitivity analyses, the most influential design variables to reliability index of quaywall were coefficient of friction, residual water pressure and resistance moment for the sliding, overturning and bearing capacity failure modes, respectively. Especially, the sensitivity of reliability index due to inertial force and dynamic water pressures, which include a large COV when earthquake occurs, did not change greatly.

Time-dependent Performance-based Design of Caisson Breakwater Considering Climate Change Impacts (기후변화 효과를 고려한 케이슨 방파제의 시간 의존 성능설계)

  • Suh, Kyung-Duck;Kim, Seung-Woo;Mori, Nobuhito;Mase, Hajime
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.215-225
    • /
    • 2011
  • During the past decade, the performance-based design method of caisson breakwaters has been developed, which allows a certain damage while maintaining the function of the structure. However, the existing method does not consider the changing coastal environment due to climate change impacts so that the stability of the structure is not guaranteed over the lifetime of the structure. In this paper, a time-dependent performance-based design method is developed, which is able to estimate the expected sliding distance and the probability of failure of a caisson breakwater considering the influence of sea level rise and wave height increase due to climate change. Especially, time-dependent probability of failure is calculated by considering the sea level rise and wave height increase as a function of time. The developed method was applied to the East Breakwater of the Hitachinaka Port which is located on the east coast of Japan. It was shown that the influence of wave height increase is much greater than that of sea level rise, because the magnitude of sea level rise is negligibly small compared with the water depth at the breakwater site. Moreover, investigation was made for the change of caisson width due to climate change impacts, which is the main concern of harbor engineers. The longer the structure lifetime, the greater was the increase of caisson width. The required increase of caisson width of the Hitachinaka breakwater whose width is 22 m at present was about 0.5 m and 1.5 m respectively for parabolic and linear wave height increase due to climate change.

Calculation of Wave Deformation and Wave Induced Current around an Underwater Shoal by Boussinesq Equation (Boussinesq 방정식을 이용한 수중 천퇴에서의 파랑변형 및 파랑류 계산)

  • Chun Insik;Seong Sangbong;Kim Guidong;Sim Jaeseol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.202-212
    • /
    • 2005
  • In the design of an of offshore structure located near an underwater shoal, the same amount of attention given to the wave height may have to be put to the wave induced current as well since some of the wave energy translates to the current. In the present study, two numerical models each based on the nonlinear Boussinesq equation and the linear mild slope equation are applied to calculate the wave deformation and secondly induced current around a shoal. The underwater shoal in Vincent and briggs' experiment (1989) is used here, and all non-breaking wave conditions of the experiment with various monochromatic and unidirectional or multidirectional spectral wave incidences are concerned. Both numerical models clearly showed wave induced currents symmetrically farmed along the centerline over the shoal. The calculated wave heights along a preset line also generally showed very nice agreements with the experimental values.

A Study on Tranquility by the Development of New Type Floating Breakwater (신형식부방파제의 개발과 정온도에 관한 연구)

  • Lee, Hyun Jin;Kim, Do Sam;Shin, Moon Seup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.3
    • /
    • pp.154-164
    • /
    • 2013
  • In this study, a new type floating breakwater was proposed to improve the capability of wave attenuation compared with the existing floating breakwater in Wonjun Port, which is located in Masan City, Korea. In order to develop the optimal design, many different configurations considering the shape and location of vertical barrier and horizontal plate were examined based on the shape of existing floating breakwaters in Wonjun and Tongyeong Port. The analytical and numerical results of the new type floating breakwater showed better performance in long-period wave attenuation than the existing floating breakwater in Wonjun. Therefore, the new type floating breakwater can improve harbor tranquility in Wonjun Port.

Uncertainty Analysis of Soft Ground Using Geostatistical Kriging Method (지구통계학 크리깅 기법을 이용한 연약지반의 불확실성 분석)

  • Yoon Gil-Lim;Lee Kang-Woon;Chae Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.5-17
    • /
    • 2005
  • Spatial uncertainty of Busan marine clay ground, which commonly occurs during site investigation testing, data analysis and transformation modeling, has been described. In this paper geotechnical uncertainty of shear strength indicator $N_k$ has been quantified in both horizontal direction and vertical direction using geostatistical Kriging method. Most of soil data used are from 25 boring tests, 75 laboratory tests, 124 field vane tests and 25 cone penetration tests (CPT). CPT-$N_k$ data for undrained shear strength determination, which are the most important properties in geotechnical design stages, have been analysed. Comparison between cone factor from conventional CPT-based method and that of geostatistical method shows that geostatistical Kriging method is an ideal tool to quantify the spatial variability of uncertainty from self-correlation of soil property of interest, and can be recommended to identify the spatial distribution of consolidation .md shear strength of soils at any sites concerned.

Development of Guide Line Position Measurement System using a Camera for RTGC Tracking Control (RTGC 주행제어를 위한 카메라기반 가이드라인 위치계측시스템 개발)

  • Jeong, Ji-Hyun;Kawai, Hideki;Kim, Young-Bok;Jang, Ji-Sung;Bae, Heon-Meen
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.72-77
    • /
    • 2011
  • The handling ability of containers at the terminal strongly depends on the performance of the cargo handling system such as RTGC(Rubber Tired Gantry Crane). This paper introduces a new guide line position measurement method using a camera for the RTGC which plays a important role in the harbor area. Because the line tracking is the basic technique for control system design of RTGC, it is necessary to develop a useful and reliable measurement system. If the displacement and angle of the RTGC relative to a guide line as trajectory to follow is obtained, the position of RTGC is calculated. Therefore, in this paper, a camera-based measurement system is introduced. The proposed measurement system is robust against light fluctuation and cracks of the guideline. This system consists of a camera and a PC which are installed at the lower side of the RTGC. Two edges of the guide line are detected from an input image taken by the camera, and these positions are determined in a Hough parameter space by using the Hough transformation method. From the experimental results, high accurate standard deviations were found as 0.98 pixel of the displacement and 0.24 degree of the angle, including robustness against lighting fluctuation and cracks of the guide line also.

A Study on improvement of Quay productivity with minimizing double activities in Container Terminal Yard (컨테이너터미널 야드 중복작업 최소화를 통한 안벽 생산성 향상에 관한 연구)

  • Kim, Geong-Jung;Lee, Jung-Sun;Lee, Moun-Su;Kwak, Kyu-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.340-341
    • /
    • 2007
  • In case of Busan Port container terminals scale of a yard device chapter is small and narrow, and redundant works of device chapter facilities ability and transfer cranes are misgovernment occurring very much bemuse of this There is to the misgovernment that cannot support design ability of a container crane of quay because of this There is this in a change of marine transportation harbor environment to cross over to a large easel next of a ship, and a large problem cannot but become. Watched how redundant works were occurring in the second yards, and presented a problem Also, present the hint point tint these redundant works analyze how productivity of quay productivity and container crane is improved if solution works, and face to this.

  • PDF