• Title/Summary/Keyword: harbor construction

Search Result 238, Processing Time 0.023 seconds

Liquefaction Susceptibility of Quay Walls to Earthquake Loadings (지진으로 인한 안벽의 액상화 위험도 평가)

  • 권오순;박우선;윤길림
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.1
    • /
    • pp.27-38
    • /
    • 2000
  • The collapses and settlement of harbor facilities from earthquakes were known due mostly to liquefaction of reclaimed land. The most harbor quay wa1ls being designed as gravity types in Korea are known susceptible structures to liquefaction because reclaimed land was not treated resistant to earthquake. In this study, liquefaction susceptibility of reclaimed land behind a large quay walls under construction to earthquake was predicted and its stability was analyzed. In addition, liquefaction prediction methods in harbor facilities specification adopted by both Korea and Japan were compared by applying the methods to prediction of liquefaction susceptibility of reclaimed land, respectively.

  • PDF

A Study on Standardization for Civil-BIM Construction of Harbor Structure based on Geo-Spatial Information Technique (지형공간정보기술 기반의 항만구조물 토목-BIM 구축을 위한 표준화 연구)

  • Min, Byung Keun;Park, Dong Hyun;Jang, Yong Gu;Kang, In Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.83-90
    • /
    • 2012
  • In this study, and taking into consideration of previous studies a trend of BIM was noticed, related to BIM software analysis and problems. Also, Geo-spatial information technology presented layered standard direction for BIM built harbor structures. Thoughts of this study, existing of two-dimensions and BIM problems based on architecture needs for applications were identified. Also, harbor structures targeting civil-BIM layer of technology-based GIS projects, and Busan International Ferry Terminal to target existing BIM comparison with harbors in the field based on GIS civil engineering-BIM standardization and direction of application could be presented.

A study on the sedimentation in the vicinity of the groins near harbor (항만 인근 해안의 인공 구조물 주변 퇴적 작용 분석)

  • Kim Hye-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.179-183
    • /
    • 2006
  • As there are many human activities in the coastal regions, various facilities and coastal engineering structures for protecting beach have been built. Dredging work, reclamation and harbor construction have caused the topography of sea floor to change rapidly. So sedimentation in the vicinity of the groins has get dull and the serious aspects sometimes turn up. Analyzing the surface sediments with transport vector model is one of the good methods to understand the sedimentation in the vicinity of the groins. I analyzed the transport vector of the surface sediments in the vicinity of the groins at the region where serious beach erosion happens near Pohang harbor.

  • PDF

A Case study of steel sheet pile (강널말뚝을 이용한 국내.외 시공 사례)

  • 여병철;김광일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.111-118
    • /
    • 1994
  • The use of steel sheet pile walls as barrier walls have the temporary for coffer dam, retaining wall in excavation, etc., but also permanent of semi-permanent for harbor construction, containment systems, vertical barrier systems for waste disposal (landfill) or subway in excavarion. In all these applicaions the resistance of the structure to seepage plays an important role. Also the stability and longevity of the construction, the possibility of permanent control and survey make the steel sheet pile wall a nearly perfect vertical barrier from a technical and economical point of view.

  • PDF

Project Risk Management & Observational Method for soft ground improvement (연약지반을 대상으로 한 프로젝트 리스크와 현장계측의 과제와 대책)

  • Imanishi, Hajime
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.509-514
    • /
    • 2006
  • Considering the risk management, there are many examples and various studies for the corporation risk. However, I have never seen the project risk management that applied a construction site for practical approach. Therefore, I have developed a chart (I-Chart) for the project risk management, and also built a model (I-Chart scenario analysis) that I could use. I applied this model to container yard reclaimed land in harbor construction with approaching of geotechnical engineering.

  • PDF

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Seung;Jeon, Min-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.619-627
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. We also considered the increase of water depth at the entrance channel by dredging work up to 15 meters depth in order to see the dredging effect. Among several model analyses, the nonlinear and breaking wave conditions are showed the most applicable results. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Sung;Jeon, Min-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.217-225
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

  • PDF

Assessment of Contamination of Harbor Dredged Materials for Beneficial Use (항만준설토사 유효활용을 위한 오염도 평가)

  • Yoon, Gil-Lim;Jeong, Woo-Seob
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.15-25
    • /
    • 2008
  • Contamination level assessment of harbor dredged materials is carried out for beneficial use, which generated annually due to port construction and maintenance of harbor channel. The basic purpose of environmental risk assessment was a scientific approach to susceptibility of hazard risk to human's health from different dredged materials. And this paper proposes a guideline of safely beneficial use of dredged materials at both industrial area and residental area, generated from major port execution throughout a sound investigation of their contamination levels. Newly proposed guidelines were in general higher levels compared to both current guidelines of treatment and use of dredged materials and soil environment protection levels. Finally, environmental assessment results of dredged material contamination generated in major ports of Korea for beneficial use based on pre-assessment environmental levels show that some port's dredged materials contain heavy metals such as Cd, As, Cr and Zn, more than base levels which requires more precise contamination investigation. Others were found to be very appropriate for beneficial use.

Dredging Material Application Lightweight Foamed Soil Full Scale Test Bed Verification (준설토 활용 경량기포혼합토 실규모 현장 실증 연구)

  • Kim, Dong-Chule;Yea, Gue-Guwen;Kim, Hong-Yeon;Kim, Sun-Bin;Choi, Han-Lim
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.163-172
    • /
    • 2018
  • To propose the design technique and the execution manual of the LWFS(Lightweight Foamed Soil) method using dredged soil, the operation system for the test-bed integrated management, and to establish an amendment for the domestic quantity per unit and specifications, and a strategy for its internationalization. In order to utilize the dredged soil from the coastal area as a construction material, we constructed the embankment with LWFS on soft ground and monitored its behavior. As a result, it can be expected that the use of LWFS as an embankment material on the soft ground can improve the economic efficiency by reducing the depth and period of soil improvement as well as the uses of nearby dredged soil. To verify the utilization of the dredged soil as a material for light-weighted roadbed, soft ground and foundation ground, and surface processing, perform an experimental construction for practical structures and analyze the behavior. It is expected to be able to improve the soft ground with dredged soil and develop technique codes and manuals of the dredged soil reclamation by constructing a test-bed in the same size of the fields, and establish the criteria and manual of effective dredged soil reclamation for practical use. The application technology of the dredged soil reclamation during harbor constructions and dredged soil reclamation constructions can be reflected during the working design stage. By using the materials immediately that occur from the reclamation during harbor and background land developments, the development time will decrease and an increase of economic feasibility will happen. It is expected to be able to apply the improved soil at dredged soil reclamation, harbor and shore protection construction, dredged soil purification projects etc. Future-work for develop the design criteria and guideline for the technology of field application of dredged soil reclamation is that review the proposed test-bed sites, consult with the institutions relevant with the test-bed, establish the space planning of the test-bed, licensing from the institutions relevant with the test-bed, select a test-bed for the dredged soil disposal area.