• Title/Summary/Keyword: harbor breakwater

Search Result 127, Processing Time 0.024 seconds

Wave Diffraction and Multi-Reflection Around Breakwaters (방파제 주위에서 발생하는 파랑의 회절 및 다중반사)

  • Lee, Changhoon;Kim, Min-Kyun;Cho, Yong-Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.232-242
    • /
    • 2005
  • In this study, we get an analytical solution for the diffraction and multi-reflection around a semi-infinite breakwater and breakwaters with a gap by using the solution of Penney and Price (1952). We find analytical solutions for single- and multi-reflections around the breakwaters by assuming that the reflected waves are regarded to be those diffracting through a breakwater gap. On the basis of these solutions, it is possible to understand the wave diffraction with different cases of incident wave direction and breakwater layout. These solutions may help harbor engineers to understand the phenomena of diffraction and multi-reflections around the breakwaters. These solutions may also be used to evaluate the applicability of wave transformation models which are used in designing coastal structures.

Design and Construction of the Cylindrical Slit Type Shore Structures

  • Lee, Joong-Woo;Nam, Ki-Dae;Park, Sang-Gill;Kim, Sug-Moon;Kang, Seok-Jin
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.645-651
    • /
    • 2009
  • In this study, a series of laboratory experiments were carried out to investigate the weak reflection of regular and random water waves over a train of protruded permeable shore structures. A cylindrical slit type breakwater and the alternatives are employed and compared for reflecting and transmitting capabilities of incident waves including wave forces. A series of random waves were generated by using the Bretschneider-Mitsuyasu frequency and directional spectrum. Measured spectrum of irregular waves without breakwaters is verified by comparing with those of the input waves generated. Weak reflection is occurred at the breakwater center of the peak frequency. If the row of breakwaters is fixed at three layers and the relative height of breakwater is fixed at 0.6, around 45% of incident wave energy is reflected to offshore. It is also found that the transmission of directional random waves increases as the maximum frequency parameter increases. A very good agreement is observed. Reflection coefficients of permeable submerged breakwaters are less than those of impermeable breakwaters. The upside-down L shape is recommended for a small fishery harbor mooring in terms of reflecting capability and of practical application. The final design was applied to the wharf of a small beach of Seolly, near Namhae at the southeast coast of Korea.

Effects of Roughness and Vertical Wall Factors on Wave Overtopping in Rubble Mound Breakwaters in Busan Yacht Harbor

  • Dodaran, Asgar Ahadpour;Park, Sang Kil;Kim, Kook Hyun;Shahmirzadi, Mohammad Ebrahim Meshkati;Park, Hong Bum
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.62-69
    • /
    • 2015
  • Coastlines are protected by breakwater structures against the erosion of sand or other materials along beaches due to wave action. This research examined the use of physical modeling to determine the effects of the tetrapod size and vertical walls of a rubble mound on the volume of wave overtopping under irregular wave conditions in coastal areas in Busan Yacht Harbor. In this analysis model, the structures were studied using irregular waves and the JONSWAP wave energy spectrum. To understand the effects of the tetrapod size and heights of the vertical wall, the study considered vertical walls of 0, 1.78, 6.83, and 9.33 cm with armor double layered material tetrapods of 8, 12, 16, and 20 tons. An extensive number of experiments covering a relatively large range of variables enabled a comprehensive discussion. First, in the presence of a short vertical wall, the water level played a key role in the overtopping discharge. In such circumstances, the values of the wave overtopping discharge decreased with increasing freeboard size. In the presence of a tall freeboard and middle, the value of the wave overtopping discharge was equally influenced by the vertical wall factor. Moreover, the tetrapod size decreased by an increase in the vertical wall factor, and relationship between them resulted in a short wall height. From an engineering point of view, considering a small water level may allow the choice of a shorter vertical wall, which would ultimately provide a more economical design.

Coastal Circulation and Bottom Change due to Ocean Resort Complex Development

  • Kim, Pill-Sung;Lee, Joong-Woo;Kim, Jeong-Seok
    • Journal of Navigation and Port Research
    • /
    • v.36 no.7
    • /
    • pp.585-590
    • /
    • 2012
  • On the basis of the potentials for the growth of local economy and the result of investigation of the ocean space development status, an ocean resort complex was proposed at the small harbor with a parallel beach in the east coast of Korea. As the development plan needs to reclaim the noticeable amount of coastal water area together with the applied shore facilities, it is necessary to analyze their impacts. Here, it was intended to analyze the coastal environment change such as water circulation and bottom change because of the development plan. A horizontal two-dimensional numerical model was applied to represent the combined impact of wind waves and tidal currents to sediment transport in that coastal region. Based on the result of 30 days tidal current simulations considering major four tidal components of $M_2$,$S_2$,$K_1$ and $O_1$ for the upper and lower boundaries and wind field data, bottom change was discussed. Flow velocities were not changed much at outer breakwater of Yangpo harbor. Bottom was eroded by maximum 1.7m after construction but some locations such as lee side of outer breakwater and some islets near the entrance shows isolated accretions. Although it needs more field observations for bottom change in the period of construction, the numerical calculation shows that there exist small impacts near the entrance area and coastal boundaries because of the development.

Analysis of Numerical Experiment for Field Application of Cylindrical Slit Type Block Breakwater (실린더 슬릿형 소파블록 방파제의 실해역 적용을 위한 수치실험분석)

  • Park, Sang-Gil;Lee, Joong-Woo;Nam, Ki-Dae;Kim, Pill-Sung
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.703-707
    • /
    • 2009
  • In order to evaluate applicability of cylindrical slit type block breakwater to the field water, which was designed from the previous physical model study, it is analyzed the calmness of harbor area by the numerical model experiment. For a small fishery port in southern coast of Korea a SWAN model using the wave action balance equation was formulated. The reflection and transmission coefficients induced by the physical model test were introduced to the numerical model. The model response with cylindrical slit type breakwater was compared with the impermeable breakwater case and the possibility of water quality improvement through the water circulation by the new structure was investigated. For numerical simulation, parameters of deepwater design wave from the prediction report II for overall deepwater design wave by KORDI were used and wind parameters from the 50years return period observed for 37years(1970~2006) were adopted in the numerical model. The response of west breakwater in Mijo port applying the NE and NNE waves, which were dominant in this area, was analyzed. It was found that the transmission characteristic of designed cylindrical slit breakwater was well presented in the numerical model.

A Study on the Safety Assessment of the replaced Single Buoy Mooring at Ulsan Harbor by Ship Handling Simulator (선박조종시뮬레이터를 이용한 울산항 원유부이이설의 안전성 평가에 관한 연구)

  • 정재용;김원욱;김창제;채양범;강성진
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.21-32
    • /
    • 2002
  • In accordance with the development plans of Ulsan harbor, Ulsan new harbor will be contructed considering supporting Ulsan harbor as a safe berthing and departure at single buoy mooring(SBM). In this study, we used a full-mission ship handling simulator adopting 300,000 DWT VLCC manoeuvered at the planned Ulsan SBM. Five masters who have had a long experience of ship maneuvering were called to carry out the simulations, of which each scenario were tried one, completed total of 68 times. The marine traffic safety was assessed in terms of 1) the closest point of approach(CPA) to other SBM and breakwater in the vicinity and the probability of crossing the restricted area of the closest SBM and fairway limit, 2) subjective evaluation such as the mental burden and the maneuvering difficulty of shiphanders, and 3) the opinions of shiphandlers. From the result of this simulation, we have a conclusion as follows; First, because crude oil berthing angle is so small by current S-OiL Co. crude oil buoy by SK Co. No 3 crude oil buoy different view SK Co. No 3 crude oil buoy and interference of current KNOC crude oil buoy, Berthing is impossible, and Emergency departing is very dangerous too operation impossible. Second it is desirable that SK Co. No 2 and No 3 Single buoy Mooring that do different view controls position so that to be not put in straight line each other. Third, SK Co. No 1 and 2 single buoy mooring that do different view to Onsanhang berthing and departing is seized by single buoy mooring by external force ship that set sail does faith control need.

  • PDF

Analysis of Change Process in the Design Conditions of Harbor Breakwaters in Korea (우리나라 항만 방파제 설계조건의 변화과정 분석)

  • Hong, Keun;Kang, Yoon-Koo;Kim, Hong-Jin;Yoon, Han-Sam;Ryu, Cheong-Ro
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.123-133
    • /
    • 2018
  • We studied the change process in the design parameters (conditions) of structural sections of vertical/slope breakwaters in Korea over the long term based on an analytical review of the latest design recommendations. This study found the following. 1) Design wave heights have increased gradually with the increase in the wave height of deep sea waves. 2) The relative design wave height ($H_{1/3}/h$) changed from 0.5 in the 1970s to 0.6~0.7 today. This means that design wave heights are overestimated compared with the water depth. 3) Before 1999, the design water level was based on high water during an average spring tide, but this has been increased since 2000 because of additional consideration of anomalous sea levels. 4) Before 1999, the relative crest heights of the investigated breakwaters was 0.6~0.7, but after 1999 this increased to a mean of 1.0 and maximum of 1.26.

Variation of Harbor Oscillations in Yeongil Bay (영일만 항만에서의 부진동 변화에 관한 연구)

  • Jeon Min-Su;Lee Joong-Woo;Jeong Jae-Hyun;Yang Sang-Yong;Jeong Young-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.30 no.6 s.112
    • /
    • pp.533-539
    • /
    • 2006
  • Today the harbor oscillation problems are the most significant factor to design harbors serving the very large ships. Large vessels moored in the elastic hawsers at the coastal harbors are often displaced due to the resonance between the long period waves and mooring system. The cargo handling may be interrupted and the hawsers may be broken, especially when the amplification becomes remarkable. The most significant harbor which is confronted with harbor oscillation problem in Korea is the Pohang New Port. Many cases of problems are being notified by the pilot association and local office of MOMAF. However, it is difficult to prevent the arrival of long waves musing oscillation within this harbor. Moreover, government already started new port plan at the mouth of Yeongil Bay without treating problems occurred in the Pohang New Port. This study deals with the variation of harbor oscillation due to the construction of 4.1km breakwater at the bay mouth and new port plan. Numerical method used are fairly standard form from the extended mild slope equation The obtained numerical results were compared with the field measurement from the previous study and this will bring a certain level of discussion and consideration of variation in the future port development.

Variation of Harbor Oscillations in Youngil Bay (영일만 항만에서의 부진동 변화에 관한 연구)

  • Jeon Min-Su;Lee Joong-Woo;Lee Seung-Chul;Jung Jae-Hyun;Hwang Ho-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.199-206
    • /
    • 2006
  • Today the harbor oscillation problems are the most significant factor to design harbors serving the very large ships. Large vessels moored in the elastic hawsers at the coastal harbors are often displaced due to the resonance between the long period waves and mooring system. The cargo handling may be interrupted and the hawsers may be broken, especially when the amplification becomes remarkable. The most significant harbor which is confronted with harbor oscillation problem in Korea is the Pohang New Port. Many cases of problems are being notified by the pilot association and local office of MOMAF. However, it is difficult to prevent the arrival of long waves causing oscillation within this harbor. Moreover, Government already started new port plan at the mouth of YoungIl Bay without treating problems occurred in the Pohang New Port. This study deals with the variation of harbor oscillation due to the construction of 4.1km breakwater at the bay mouth and new port plan. Numerical method used are fairly standard form from the extended mild slope equation. The obtained numerical results were compared with the field measurement from the previous study and this will bring a certain level of discussion and consideration of variation in the future port development.

  • PDF

Comparative Study of Reliability Design Methods by Application to Donghae Harbor Breakwaters. 2. Sliding of Caissons (동해항 방파제를 대상으로 한 신뢰성 설계법의 비교 연구. 2. 케이슨의 활동)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Oh, Young-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.137-146
    • /
    • 2006
  • This is the second of a two-part paper which describes comparison of reliability design methods by application to Donghae Harbor Breakwaters. In this paper, Part 2, we deal with sliding of caissons. The failure modes of a vertical breakwater, which consists of a caisson mounted on a rubble mound, include the sliding and overturning of the caisson and the failure of the rubble mound or subsoil, among which most frequently occurs the sliding of the caisson. The traditional deterministic design method for sliding failure of a caisson uses the concept of a safety factor that the resistance should be greater than the load by a certain factor (e.g. 1.2). However, the safety of a structure cannot be quantitatively evaluated by the concept of a safety factor. On the other hand, the reliability design method, for which active research is being performed recently, enables one to quantitatively evaluate the safety of a structure by calculating the probability of failure of the structure. The reliability design method is classified into three categories depending on the level of probabilistic concepts being employed, i.e., Level 1, 2, and 3. In this study, we apply the reliability design methods to the sliding of the caisson of the breakwaters of Donghae Harbor, which was constructed by traditional deterministic design methods to be damaged in 1987. Analyses are made for the breakwaters before the damage and after reinforcement. The probability of failure before the damage is much higher than the allowable value, indicating that the breakwater was under-designed. The probability of failure after reinforcement, however, is close to the allowable value, indicating that the breakwater is no longer in danger. On the other hand, the results of the different reliability design methods are in fairly good agreement, confirming that there is not much difference among different methods.