• Title/Summary/Keyword: handsheets

Search Result 101, Processing Time 0.027 seconds

Performance of Fixing Agents in Controlling Micro-Stickies in Recycled Newsprint Pulp

  • Wang, Li-Jun;Chen, Fu-Shan;Zhou, Lin-Jie
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.111-116
    • /
    • 2006
  • The microstickes control effects of some fixing agents, including an inorganic PAC, an organic polyamine (PA) and polydiallydimethyl ammonium chloride (Pdadmac), and a high cationic starch (HCS), were investigated, together with their effects on wet end performances and physical properties of handsheets. Despite that the HCS and Pdadmac had lower cationic charge densities than the PA and PAC (the HCS being even lower), they gave higher zeta potentials to fibers, and lower turbidities, cationic demands and residual COD contents to the pulp liquid phases than the PA and PAC did. In all cases, the HCS showed even better effects than the Pdadmac. In addition, drainage speed was also much higher by the HCS treatments although paper formation was worsened. All the phenomena showed that the HCS can fix more dissolved and colloidal substances to cellulose fibers, indicating that the HCS functioned mainly with flocculation and even hydrogen bonding mechanisms. Data on optical properties further indicated that the HCS interacted preferentially with colloidal substances, since it fixed more 'dirty' microstickes to fibers which decreased more sheet brightness while increasing more sheet opacity (with both higher light absorption and scattering coefficients). Interestingly, the organic fixing agents did not decrease tensile, tearing, and folding strengths of paper sheets made from 100% recycled newsprint pulp, except when they were dosed in high amounts. On the contrary, the inorganic PAC had more serious negative effects on the strength properties, especially on folding endurance. The study suggested that proper use of the HCS can lead to better microstickies control effects than traditional agents and methods.

  • PDF

Effects of the Size and Distribution of Preflocculated GCC on the Physical Properties of Paper

  • Lee, Kyong-Ho;Lee, Hak-Lae;Youn, Hye-Jung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.85-90
    • /
    • 2006
  • Increasing the filler content of sheet improves the optical properties and printability of paper and provides an opportunity for saving production cost through fiber replacement with relatively low-priced filler. But increasing the filler content tends to decrease the strength of paper and filler retention. It also tends to deteriorate drainage on the paper machine. To overcome these problems, preflocculation technology of fillers may be employed. Many research efforts have been made on the properties of preflocculated filler, namely prefloc, whose size and size distribution were influenced by polymer type and shear level. But there is much to be investigated about the effect of the prefloc characteristics on the physical properties of paper. To evaluate the effect cationic polymers on the size and size distribution of preflocculated GCC and their shear stability, cationic PAM and cationic starch were used. The influence of the preflocculation on filler retention and its surface distribution, and the changes of physical and optical properties of handsheets affected by the characteristics of preflocs were examined. Filler distribution on sheet surface was also analyzed by EPMA. Results showed that cationic PAM formed large preflocs at low dosage. Cationic starch was required to add 15 times as much as cationic PAM to obtain the preflocs with similar size. But preflocs formed with cationic starch was superior in shear stability to those formed with cationic PAM. Filler preflocculation technology could provide an opportunity of increasing filler content significantly without loss in tensile strength. And increased filler contents could compensate brightness loss which often accompanies filler preflocculation. When excessively large preflocs were used, however, brightness loss rather than the improvement in tensile strength was predominant. Therefore it is of great importance to produce preflocs with proper size and shear stability for maximizing the improvement of physical properties of papers.

  • PDF

Strength property improvement of OCC-based paper by chemical and mechanical treatments (2) (골판지 고지의 물리화학적 처리에 의한 강도향상 (제2보))

  • Lee, Jong-Hoon;Seo, Yung B.;Jeon, Yang;Lee, Hak-Lae;Shin, Jong-Ho
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.69-69
    • /
    • 2000
  • In the previous experiment, it was found that OCC pre-treatment with Hobat mixer at 20-25% consistency for 3 hrs or more followed by the application of the equal refining time, caused the increase of tensile strength, burst strength, compressive strength and tear resistance, compared to the no pre-treated. Four completely different fibers, which were Hw-BKP, Sw-BKP, White ledger, and OCC were selected for this experiment to investigate the effect of mechanical pre-treatment process on different fibers. From the experiment, it was found that the mechanical pre-treatment did not decrease fiber length at all, but decreased freeness, compared to the no pre-treated, when the same refining time was applied WRVs of the pre-treated fibers were higher than the no pre-treated at the same freeness level. It was speculated that the mechanical pre-treatment induced only hydrophilic nature of fibers without damaging fiber length by delaminating fiber walls. The fiber surface area and the physical strength differences of handsheets will be discussed in the next publication.

  • PDF

Strength Property Improvement of OCC-based Paper by Chemical and Mechanical Treatments(I) (골판지 고지의 물리화학적 처리에 의한 강도 향상(제 1 보))

  • Lee, Jong-Hoon;Seo, Yung B.;Jeon, Yang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.10-18
    • /
    • 2000
  • To improve the physical properties of OCC (Old Corrugated Container) fibers, we used the mechanical pre-treatment on the fibers before refining . The mechanical action in the Hobart mixer induced high shear and compression on the fibers, which resulted in changes of fiber internal structure, and microcompressions on the surface of the fibers. We evaluated the amount of mechanical treatment on the fibers by fiber curl index for convenience. Four different refining techniques were applied to the pre-treated fibers (valley beater, Kady mill, PFI mill, and Impact refining) to find the best combination of the pre-treatment and the refining methods. Conclusions were summarized as followed. 1. Mechanical pre-treatment in Hobart mixer for more than 1 hour caused the increase of curl index of OCC fibers, and increased breaking length, burst index, and tear index the handsheets more than 10 % in this experiment. 2. Kady mill and PFI mill refining were effective in keeping fiber length from shortening Kady mill and Valley beater refining straightened out the fiber curls, and reduced the curl index. 3. Valley beating reduced fiber length very fast and generated fines more than other refining methods. 4. To increase breaking length and burst strength while keeping tear strength , combination of mechanical pre-treatment and Valley beating were most effective.

  • PDF

Development of New Organic Filler for Improving Paperboard Strengths (판지의 강도 향상을 위한 신규 유기충전제 개발)

  • Lee, Ji Young;Kim, Chul Hwan;Park, Jong Hye;Kim, Eun Hea;Yun, Kyeong Tae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.74-79
    • /
    • 2015
  • Wood powder is widely used in paperboard mills to increase bulk and reduce drying-energy consumption, but this material also deteriorates paper strength because it interferes with the bonds between fibers. Although there have been many studies done to improve the strength of paperboard containing wood powder, specific applications have not recently been observed in paperboard mills. In this study, we carried out a new approach for improving paperboard strength by developing a new organic filler with the ability to increase the bonds between fibers. The residue of tapioca starch was used as raw material to manufacture an organic filler. The functionalities, including bulk and strength, were evaluated by making handsheets containing either wood powder or tapioca organic filler, or a mixture of the two, and measuring their physical properties. The organic filler showed lower bulk improvement and higher paperboard strength than the wood powder. The mixture of tapioca organic filler and wood powder showed improved paperboard strength compared to wood powder alone. Therefore, tapioca residue can be used as a raw material to manufacture an organic filler for paperboard mills.

Effect of New Organic Filler Made From Oil Palm Biomass on Paperboard Properties (오일팜 부산물을 이용한 유기충전제 제조 가능성 평가)

  • Lee, Ji Young;Kim, Chul Hwan;Sung, Yong Joo;Park, Jong-Hea;Kim, Eun Hea
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.61-67
    • /
    • 2015
  • As the production of palm oil has been increased, the generation of oil palm biomass is also increased and the utilization of the oil palm biomass become more significant topic. One third of the oil palm biomass is empty fruit bunch (EFB) and the other two thirds are oil palm trunks and fronds. However, the effective use of oil palm biomass has not been developed and most of it is discarded near oil palm plants. In this study, we investigated the applicability of EFB to the paperboard mills, as an organic filler. The new organic filler was manufactured in a laboratory by grinding and fractionating dried EFB powder, and its properties were analyzed. The particles of EFB organic filler were larger and more spherical than those of the commercial wood powder. The use of EFB organic filler resulted in a higher bulk of the handsheets with similar trends of physical strength, compared to those made with wood powder. It was concluded that EFB could be used as a raw material to manufacture organic filler for paperboard production.

Evaluation of Recyclability at Varied Blending Ratios of Gable Top and Aseptic Brick Carton (상온보존팩과 냉장보존팩의 배합비율에 따른 재활용 특성 평가)

  • Seo, Jin Ho;Lee, Tai Ju;Lee, Dong Jin;Lee, Myoung Ku;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.123-129
    • /
    • 2015
  • There are two kinds of cartons for beverage packaging, one is aseptic brick (AB) type and the other is gable top (GT). In this study, AB and GT were used as a raw material of recycled paper to investigate the recyclability at their varied blending ratios. Fiber consistency at pulping decreased as the blending ratio of AB increased. As a result, a lot of fines were generated from AB and flakes from GT increased because shear force in pulper decreased. Bulk of handsheets was more than $2.0cm^3/g$, and ISO brightness decreased as the blending ratio of AB increased. The best condition to recycle beverage cartons is to discriminate each cartons separately because of differences in the composition. However, there are problems such as the limit of the collection system and social costs. Therefore, it is assumed that the blending ratios of AB should be adjusted at less than 20% for effective recycling of beverage cartons.

Application of In-situ CaCO3 Formation Method for Better Utilization of Recycled Fibers (2) - Comparison with CaCO3 Addition Method and Effects of Temperature - (고지의 효과적인 활용을 위한 in-situ 탄산칼슘 부착방식의 연구(2) - 탄산칼슘 첨가방식과 비교 및 반응온도에 따른 변화 -)

  • Lee, Min Woo;Lee, Young Ho;Jung, Jae Kwon;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.27-34
    • /
    • 2014
  • In-situ $CaCO_3$ formation onto recycled wood pulp was studied to improve optical properties and ash attachment to the fiber furnish in papermaking. We controlled initial reaction temperature of in-situ $CaCO_3$ formation method from $30^{\circ}C$ to $50^{\circ}C$. It was found that the attachment of newly formed $CaCO_3$ to recycled fibers, old newspaper (ONP) in this case, was stronger than that of ground calcium carbonate (GCC, mean dia. $2.4{\mu}m$) addition case, but was not much different among those formed at different temperature. Morphologies of newly formed $CaCO_3$ were changed according to the reaction temperature. More aragonite shape was seen at higher temperature. In-situ $CaCO_3$ formation increased brightness and lowered ERIC value of ONP sheet greatly at the same level of ash contents when compared to GCC addition method, but gave equivalent ERIC and brightness when compared to those of the precipitated calcium carbonate (PCC) addition method. However, tensile strength of the handsheets of the in-situ $CaCO_3$ formation method were much greater than those of the PCC addition method.

Coagulation of Cationic Rosin Emulsion and its Effect on Ink Receptivity of Coating Layer (양이온성 로진 에멀션의 응결현상이 도공층의 잉크흡수성에 미치는 영향)

  • 박철웅;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.3
    • /
    • pp.74-83
    • /
    • 1998
  • The phenomenon of decrease in sizing efficiency when the stock temperature is increased is well recognized as summer sizing, and this is believed to be caused by uneven distribution of sizing agents on paper surface most often incurred by coagulation of sizing agents. When unevenly sized paper is used as coating base stock, nonuniform consolidation of the coating layer may result, which, in turn, causes uneven distribution of binder on coating surface. This causes nonuniform ink absorption to produce print mottle. In this study the effects of simple or polymeric electrolytes, storage temperature and time on the coagulation of cationic dispersed rosin size were investigated using a turbidity measurement method which was verified to correlate well with the particle size of rosin emulsion or its coagulates. Handsheets sized with rosin dispersions coagulated under various conditions were prepared and their sizing degree and coated paper properties including gloss and ink density were examined. The relationship between the sizing nonuniformity of coated papers and its ink absorption property was evaluated. Turbidity of rosin emulsion increased as the storage temperature and time were increased. Addition of simple or polymeric electrolytes caused reduction in $zeta$ -potential of the rosin dispersion and accelerated the coagulation tendency substantially. Reversion of the $zeta$ -potential of rosin dispersion, however, did not occur when coagulation was induced with simple electrolytes. On the other hand, addition of an anionic polyelectrolyte reversed the $zeta$ -potential of the flocculated rosin dispersion. This indicated that electrical double layer compaction and bridging flocculation were coagulation mechanisms for simple and polymeric electrolytes, respectively. Sizing degree decreased as coagulation of rosin was increased. Paper gloss, ink gloss and ink density were increased when sizing degree of base stock was increased most probably due to prevention of base paper swelling and increased binder migration to coating surface. This suggested that uneven printing ink density occurred when uneven sizing development was induced by coagulation of rosin particles.

  • PDF

Strength Property Improvement of OCC-based Paper by Various Mechanical and Chemical Treatments of its Fiber (골판지 고지의 물리화학적 처리에 의한 강도향상)

  • Seo, Yung B.;Lee, Jong Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • To increase the strength properties of recycled fiber, especially OCC (Old Corrugated Container) in this study, we used the mechanical pretreatment on the fibers before refining. The mechanical action in the Hobart mixer induced high shear and compression on the fibers, which resulted in the breakdowns of fiber internal structure, and microcompressions on the surface of the fibers. We evaluated the degree of mechanical treatment by fiber curl index. Four different refining techniques were applied to the pretreated fibers (Valley beater, Kady mill, PFI mill, and Impact refining) to find the best combination of the pretreatment and the refining methods. Conclusions were summarized as followed. 1. In keeping the fiber length from shortening, Kady mill and PFI mill refining were effective. Kady mill and Valley beater application tended to straighten out the fiber shapes. 2. Valley beating increased the breaking length of the handsheets better than other methods, while lowering the tear strength most. The mechanical pretreatment increased breaking length about 10% in average irrespective of four different refining methods. 3. Tear strength was increased by the mechanical pretreatment and by the PFI mill refining. 4. Burst strength was increased by the mechanical pretreatment and by valley beating method. 5. In increasing the breaking length and burst strength while keeping tear strength, combination of mechanical pretreatment and Valley beating were most effective.

  • PDF