Export Prediction Using Separated Learning Method and Recommendation of Potential Export Countries (분리학습 모델을 이용한 수출액 예측 및 수출 유망국가 추천)
-
- Journal of Intelligence and Information Systems
- /
- v.28 no.1
- /
- pp.69-88
- /
- 2022
One of the characteristics of South Korea's economic structure is that it is highly dependent on exports. Thus, many businesses are closely related to the global economy and diplomatic situation. In addition, small and medium-sized enterprises(SMEs) specialized in exporting are struggling due to the spread of COVID-19. Therefore, this study aimed to develop a model to forecast exports for next year to support SMEs' export strategy and decision making. Also, this study proposed a strategy to recommend promising export countries of each item based on the forecasting model. We analyzed important variables used in previous studies such as country-specific, item-specific, and macro-economic variables and collected those variables to train our prediction model. Next, through the exploratory data analysis(EDA) it was found that exports, which is a target variable, have a highly skewed distribution. To deal with this issue and improve predictive performance, we suggest a separated learning method. In a separated learning method, the whole dataset is divided into homogeneous subgroups and a prediction algorithm is applied to each group. Thus, characteristics of each group can be more precisely trained using different input variables and algorithms. In this study, we divided the dataset into five subgroups based on the exports to decrease skewness of the target variable. After the separation, we found that each group has different characteristics in countries and goods. For example, In Group 1, most of the exporting countries are developing countries and the majority of exporting goods are low value products such as glass and prints. On the other hand, major exporting countries of South Korea such as China, USA, and Vietnam are included in Group 4 and Group 5 and most exporting goods in these groups are high value products. Then we used LightGBM(LGBM) and Exponential Moving Average(EMA) for prediction. Considering the characteristics of each group, models were built using LGBM for Group 1 to 4 and EMA for Group 5. To evaluate the performance of the model, we compare different model structures and algorithms. As a result, it was found that the separated learning model had best performance compared to other models. After the model was built, we also provided variable importance of each group using SHAP-value to add explainability of our model. Based on the prediction model, we proposed a second-stage recommendation strategy for potential export countries. In the first phase, BCG matrix was used to find Star and Question Mark markets that are expected to grow rapidly. In the second phase, we calculated scores for each country and recommendations were made according to ranking. Using this recommendation framework, potential export countries were selected and information about those countries for each item was presented. There are several implications of this study. First of all, most of the preceding studies have conducted research on the specific situation or country. However, this study use various variables and develops a machine learning model for a wide range of countries and items. Second, as to our knowledge, it is the first attempt to adopt a separated learning method for exports prediction. By separating the dataset into 5 homogeneous subgroups, we could enhance the predictive performance of the model. Also, more detailed explanation of models by group is provided using SHAP values. Lastly, this study has several practical implications. There are some platforms which serve trade information including KOTRA, but most of them are based on past data. Therefore, it is not easy for companies to predict future trends. By utilizing the model and recommendation strategy in this research, trade related services in each platform can be improved so that companies including SMEs can fully utilize the service when making strategies and decisions for exports.
This is a short-term longitudinal study investigating the relationships between changes in mental health and academic burnout among Korean middle school students. Study sample consisted of 409 middle school students in Seoul provision, with 161 male, 216 female, and 32 unidentified. Both Symptom Check List(SCL-47) and Maslach Burnout Inventory-Student Survey(MBI-SS) were used. In order to examine the pattern of changes in mental health and academic burnout among students, standardized residuals were calculated using regression equations which were then put into canonical correlation analysis. The results of this study are as follows. First, according to Function 1, among sub-factors of mental health, decreases in depression, compulsion, anxiety, and hostility were particularly associated with decreases in exhaustion and cynicism among academic burnout. Put in another way, students who showed increases in depression, compulsion, anxiety, and hostility experienced more academic exhaustion and cynicism. Second, according to Function 2, increases in phobic anxiety, compulsion with decreases in anxiety, depression were associated with decrease in academic exhaustion and increase in cynicism. Considering Russell's dimensional theory of emotion, Function 1 showed that mental health symptoms including both aroused and non-aroused affects were related with increases in exhaustion and cynicism while Function 2 showed that mental health symptoms including only aroused aspects were related with decrease in exhaustion and increase in cynicism. Thus, a conclusive intervention program seems to be required to deal with both aroused and non-aroused affects of students who are experiencing increased exhaustion and cynicism. On the other hand, an intervention program focused on aroused affects seems appropriate to students who are experiencing decreased exhaustion and increased cynicism. This study has its value in that it has enhanced understanding of students in school and counseling settings by revealing the relationships between mental health and academic burnout among adolescents and suggested differentiated intervention strategies based on patterns of students' academic burnout.
As pointed out by many previous investigators, the cardio-pulmonary system of well trained athletes is so adapted that they can perform a given physical exercise more efficiently as compared to non-trained persons. However, the time course of the development of these cardio-pulmonary adaptations has not been extensively studied in the past. Although the development of these training effects is undoubtedly related to the magnitude of an exercise load which is repeatedly given, it would be practical if one could maintain a good physical fitness with a minimal daily exercise. Hence, the present investigation was undertaken to study the time course of the development of cardio-pulmonary adaptations while a group of non-athletes was subjected to a daily 6 to 10 minutes running exercise for a period of 4 weeks. Six healthy male medical students (22 to 24 years old) were randomly selected as experimental subjects, and were equally divided into two groups (A and B). Both groups were subjected to the same daily running exercise (approximately 1,000 kg-m). 6 days a week for 4 weeks, but the rate of exercise was such that the group A ran on treadmill with 8.6% grade for 10 min daily at a speed of 127 m/min while the group B ran for 6 min at a speed of 200 m/min. In order to assess the effects of these physical trainings on the cardio-pulmonary system, the minute volume, the
Phytin is a salt(mainly calcium and magnesium) of phytic acid and its purity and molecular formula can be determined by assaying the contents of phosporus, calcium and magnesium in phytin. In order to devise a new method for the quantitative analysis of the three elements in phytin, the chelatometric method was developed as follows: 1) As the pretreatment for phytin analysis, it was ashfied st
The effects of various weather factors on yield components of rice, year variation of yield components within regions, and regional differences of yield components within year were investigated at three Crop Experiment Stations O.R.D., Suweon, Iri, Milyang, and at nine provincial Offices of Rural Development for eight years from 1966 to 1973 for the purpose of providing information required in improving cultural practices and predicting the yield level of rice. The experimental results analyzed by standard partial regression analysis are summarized as follows: 1. When rice was grown in ordinary seasonal culture the number of panicles greatly affected rice yield compared to other yield components. However, when rice was seeded in ordinary season and transplanted late, and transplanted in ordinary season in the northern area the ratio of ripening was closely related to the rice yield. 2. The number of panicles showed the greatest year variation when the Jinheung variety was grown in the northern area. The ripening ratio or 1, 000 grain weight also greatly varied due to years. However, the number of spikelets per unit area showed the greatest effects on yield of the Tongil variety. 2. Regional variation of yield components was classified into five groups; 1) Vegetation dependable type (V), 2) Partial vegetation dependable type (P), 3) Medium type (M), 4) Partial ripening dependable type (P.R), and 5) Ripening dependable type (R). In general, the number of kernel of rice in the southern area showed the greatest partial regression coefficient among yield components. However, in the mid-northern part of country the ripening ratio was one of the component!; affecting rice yield most. 4. A multivariate equation was obtained for both normal planting and late planting by log-transforming from the multiplication of each component of four yield components to additive fashion. It revealed that a more accurate yield could be estimated from the above equation in both cases of ordinary seasonal culture and late transplanting. 5. A highly positive correlation coefficient was obtained between the number of tillers from 20 days after transplanting and the number of panicles at each(tillering) stage 20 days after transplanting in normal planting and late planting methods. 6. A close relationship was found between the number of panicles and weather factors 21 to 30 days, after transplanting. 7. The average temperature 31 to 40 days after transplanting was greatly responsible for the maximum number of tillers while the number of duration of sunshine hours per day 11 to 30 days after transplantation was responsible for that character. The effect of water temperature was negligible. 8. No reasonable prediction for number of panicles was calculated from using either number of tillers or climatic factors. The number of panicles could early be estimated formulating a multiple equation using number of tillers 20 days after transplantation and maximum temperature, temperature range and duration of sunshine for the period of 20 days from 20 to 40 days after transplantation. 9. The effects of maximum temperature and day length 25 to 34 days before heading, on kernel number per panicle, were great in the mid-northern area. However, the minimum temperature and day length greatly affected the kernel number per panicle in the southern area. The maximum temperature had a negative relationship with the kernel number per panicle in the southern area. 10. The maximum temperature was highly responsible for an increased ripening ratio. On the other hand, the minimum temperature at pre-heading and early ripening stages showed an adverse effect on ripening ratio. 11. The 1, 000 grain weight was greatly affected by the maximum temperature during pre- or mid-ripening stage and was negatively associated with the minimum temperature over the entire ripening period.
A paleomagnetic investigation for the Cretaceous rocks in the Buyeo and Hampyeong Basins, located out of the Gyeongsang Basin, was carried out in order to elucidate the paleomagnetic directions in conjunction with the formation of the basins. Typical stepwise thermal demagnetization and measurement methods were used to determine the directions of characteristic remanent magnetizations (ChRMs). The mean direction of the sedimentary rocks from the Buyeo Basin after bedding correction
These studies were aimed at clarification of genetic and ecological variation in culm length, panicle length and plant height of the
Experiments and investigations were done basically and practically for the purpose of labor saving in paddy rice cultivation especially on Homizil i.e. hoeing and herbicide, 1969. 8 concrete tanks were established on the open base of Keon Kuk University for comparison of percolation, dissolved oxygen and yield test of rice in the paddy plot of tank. The dimension of the bottom of each tank is square meter. Each of the 4 of the 8 tanks is 21cm in height and each of the remaining 4 tanks is 36cm. Each tank has a system that comprises 2 sets of tubes, each of which has 20 holes of 5mm in diameter scattered every side and is covered with nylon cloth taking water in the tank. One set consists of 4 P.V.C tubes. The first set is situated 8cm below the top of the tank and the second set is located at bottom layer inside the tank. The 4 tubes of each set are combined together and led to the glass tube which protects from inside to outside. And this inside-outside glass tube is connected to the small rubber tube. Also a glass tube is set 4cm below the top of the tank. Paddy loam was filled on sand in each of the tanks in the soil depth of either 15cm or 30cm. The depth of sand was 5cm in the soil depth of 15cm and 10cm in the soil depth of 30cm. (Fig. 1, 2 and 3). The paddy rice was grown in the tank. The percolation of water, the dissolved oxygen and the yield of rice were observed in the tank. And the dissolved oxygen was detected by Winkler method. A sandy paddy field of heavy percolation was selected at the field of the National Agricultural Material Inspection Center in Seoul. It was divided into 9 plots. These plots were given 3 treatments: (A) not hoeing, (B) hoeing one time and (C) hoeing two times. These treatments were replicated 3 times along the latin square design. The paddy rice was grown and sprayed with Stam F-34 in the all plots for the purpose of killing weeds before hoeing. The two types of paddy of field i.e. one for normal percolation and the other for ill drainage were selected at Iri Crop Experiment Station, Jeonla-Bukdo. Each field was divided into 24 plots for 8 treatments. They are: (A) not hoeing; (B) hoeing one time; (C) hoeing two times; (D) not hoeing but treating with herbicide, Pamcon; (E) hoeing one time and weeding two times also treating with herbicide, Pamcon; (F) hoeing two times and weeding one time a], o treating with herbicide, Pamcon; (G) hoeing two times and weeding two times also treating with herbicide, Pamcon, ; (H) usual manner. The labor hours and expenses needed for weeding in the paddy by hoeing were investigated in a farmer at Suwon and the price of herbicide and the yield of rice were taken out at Iri, Jeonla-Bukdo. The results obtained from the above experiments and investigations are as follows: 1. The relationship between percolation and dissolved oxygen shows that a very small amount of oxygen is detected in the soil water under 2cm below surface of earth in the paddy even when percolation is over 4.0cm per 24 hours (Tab. 1). 2. The relationship between percolation and yield of rice shows that the yield of rice increases in the percolation of 0cm and 1.5cm per 24 hours and decreases in the percolation of 2.5cm and 3.4cm in the plot of the 15cm ploughing depth and increases in the percolation of 1.4cm and 3.0cm and decreases in the percolation of 0cm and 4.0cm in the plot of 30cm ploughing depth (Tab. 1 and Fig. 5). 3. The yield of paddy weeded with Stam F-34 in the sandy field of heavy percolation in Seoul was 3.02 tons in the plot of not hoeing, 2.99 tons in hoeing one time and 3.05 tons in hoeing two times per hectare (Tab. 5). 4.1). 4. 1) The yield of rice per 10 ares in the field of normal percolation at Iri was 338kg in not hoeing, 379kg in hoeing one time, 383kg in hoeing two times, 413kg in spraying herbicide, Pamcon, and not hoeing, 433kg in spraying herbicide, Pamcon, and hoeing one time and weeding two times, 399kg in spraying herbicide, Pamcon, and hoeing two times and weeding one time, 420kg in spraying herbicide, Pamcon, and hoeing two times and weeding two times and 418kg in usual manner (Tab. 6-1). 2) The yield of rice per 10 ares in the field of ill drainage at Iri was 323kg in not hoeing, 363kg in hoeing one time, 342kg in hoeing two times, 388kg in spraying herbicide, Pamcon, and not hoeing, 425kg in spraying herbicide, Pamcon, and hoeing one time and weeding two times, 427kg in spraying herbicide, Pamcon, and hoeing two times and weeding one time, 449kg in spraying herbicide, Pamcon, and hoeing two times and weeding two times and 412kg in usual manner (Tab. 6-2). 5. 1) The labor hours for weeding by hoeing was 37.1 hours but 53.5 hours if hours for meal, smoking and so on are included, and the expenses including labor cost needed for weeding by hoeing in the paddy rice was 2, 346 Won per 10 ares at Suwon (Tab. 7). 2) The labor hours for weeding by spraying herbicide with hand sprayer in the paddy rice was about 5 hours per 10 ares at Suwon and the expenses for weeding by spraying herbicide in the paddy rice was 750 Won but 1130 Won if the loss by decrement of rice in the paddy field of ill drainage per 10 ares is calculated in estimation at Iri (Tab. 8). From these observations and investigations it is known that using of some kinds of herbicides Saves labor and expenses of weeding, almost without giving damages to the rice itself, in the field of normal or heavy percolation comparing usual manner of hoeing.
Just before the Korean War, the total number of the North Korean troops was 198,380, while that of the ROK(Republic of Korea) army troops 105,752. That is, the total number of the ROK army troops at that time was 53.3% of the total number of the North Korean army. As of December 2008, the total number of the North Korean troops is estimated to be 1,190,000, while that of the ROK troops is 655,000, so the ROK army maintains 55.04% of the total number of the North Korean troops. If the ROK army continues to reduce its troops according to [Military Reform Plan 2020], the total number of its troops will be 517,000 m 2020. If North Korea maintains the current status(l,190,000 troops), the number of the ROK troops will be 43.4% of the North Korean army. In terms of units, just before the Korean War, the number of the ROK army divisions and regiments was 80% and 44.8% of North Korean army. As of December 2008, North Korea maintains 86 divisions and 69 regiments. Compared to the North Korean army, the ROK army maintains 46 Divisions (53.4% of North Korean army) and 15 regiments (21.3% of North Korean army). If the ROK army continue to reduce the military units according to [Military Reform Plan 2020], the number of ROK army divisions will be 28(13 Active Division, 4 Mobilization Divisions and 11 Local Reserve Divisions), while that of the North Korean army will be 86 in 2020. In that case, the number of divisions of the ROK army will be 32.5% of North Korean army. During the Korean war, North Korea suddenly invaded the Republic of Korea and occupied its capital 3 days after the war began. At that time, the ROK army maintained 80% of army divisions, compared to the North Korean army. The lesson to be learned from this is that, if the ROK army is forced to disperse its divisions because of the simultaneous invasion of North Korea and attack of guerrillas in home front areas, the Republic of Korea can be in a serious military danger, even though it maintains 80% of military divisions of North Korea. If the ROK army promotes the plans in [Military Reform Plan 2020], the number of military units of the ROK army will be 32.5% of that of the North Korean army. This ratio is 2.4 times lower than that of the time when the Korean war began, and in this case, 90% of total military power should be placed in the DMZ area. If 90% of military power is placed in the DMZ area, few troops will be left for the defense of home front. In addition, if the ROK army continues to reduce the troops, it can allow North Korea to have asymmetrical superiority in military force and it will eventually exert negative influence on the stability and peace of the Korean peninsular. On the other hand, it should be reminded that, during the Korean War, the Republic of Korea was attacked by North Korea, though it kept 53.3% of troops, compared to North Korea. It should also be reminded that, as of 2008, the ROK army is defending its territory with the troops 55.04% of North Korea. Moreover, the national defense is assisted by 25,120 troops of the US Forces in Korea. In case the total number of the ROK troops falls below 43.4% of the North Korean army, it may cause social unrest about the national security and may lead North Korea's misjudgement. Besides, according to Lanchester strategy, the party with weaker military power (60% compared to the party with stronger military power) has the 4.1% of winning possibility. Therefore, if we consider the fact that the total number of the ROK army troops is 55.04% of that of the North Korean army, the winning possibility of the ROK army is not higher than 4.1%. If the total number of ROK troops is reduced to 43.4% of that of North Korea, the winning possibility will be lower and the military operations will be in critically difficult situation. [Military Reform Plan 2020] rums at the reduction of troops and units of the ground forces under the policy of 'select few'. However, the problem is that the financial support to achieve this goal is not secured. Therefore, the promotion of [Military Reform Plan 2020] may cause the weakening of military defence power in 2020. Some advanced countries such as Japan, UK, Germany, and France have promoted the policy of 'select few'. However, what is to be noted is that the national security situation of those countries is much different from that of Korea. With the collapse of the Soviet Unions and European communist countries, the military threat of those European advanced countries has almost disappeared. In addition, the threats those advanced countries are facing are not wars in national level, but terrorism in international level. To cope with the threats like terrorism, large scaled army trops would not be necessary. So those advanced European countries can promote the policy of 'select few'. In line with this, those European countries put their focuses on the development of military sections that deal with non-military operations and protection from unspecified enemies. That is, those countries are promoting the policy of 'select few', because they found that the policy is suitable for their national security environment. Moreover, since they are pursuing common interest under the European Union(EU) and they can form an allied force under NATO, it is natural that they are pursing the 'select few' policy. At present, NATO maintains the larger number of troops(2,446,000) than Russia(l,027,000) to prepare for the potential threat of Russia. The situation of japan is also much different from that of Korea. As a country composed of islands, its prime military focus is put on the maritime defense. Accordingly, the development of ground force is given secondary focus. The japanese government promotes the policy to develop technology-concentrated small size navy and air-forces, instead of maintaining large-scaled ground force. In addition, because of the 'Peace Constitution' that was enacted just after the end of World War II, japan cannot maintain troops more than 240,000. With the limited number of troops (240,000), japan has no choice but to promote the policy of 'select few'. However, the situation of Korea is much different from the situations of those countries. The Republic of Korea is facing the threat of the North Korean Army that aims at keeping a large-scale military force. In addition, the countries surrounding Korea are also super powers containing strong military forces. Therefore, to cope with the actual threat of present and unspecified threat of future, the importance of maintaining a carefully calculated large-scale military force cannot be denied. Furthermore, when considering the fact that Korea is in a peninsular, the Republic of Korea must take it into consideration the tradition of continental countries' to maintain large-scale military powers. Since the Korean War, the ROK army has developed the technology-force combined military system, maintaining proper number of troops and units and pursuing 'select few' policy at the same time. This has been promoted with the consideration of military situation in the Koran peninsular and the cooperation of ROK-US combined forces. This kind of unique military system that cannot be found in other countries can be said to be an insightful one for the preparation for the actual threat of North Korea and the conflicts between continental countries and maritime countries. In addition, this kind of technology-force combined military system has enabled us to keep peace in Korea. Therefore, it would be desirable to maintain this technology-force combined military system until the reunification of the Korean peninsular. Furthermore, it is to be pointed out that blindly following the 'select few' policy of advanced countries is not a good option, because it is ignoring the military strategic situation of the Korean peninsular. If the Republic of Korea pursues the reduction of troops and units radically without consideration of the threat of North Korea and surrounding countries, it could be a significant strategic mistake. In addition, the ROK army should keep an eye on the fact the European advanced countries and Japan that are not facing direct military threats are spending more defense expenditures than Korea. If the ROK army reduces military power without proper alternatives, it would exert a negative effect on the stable economic development of Korea and peaceful reunification of the Korean peninsular. Therefore, the desirable option would be to focus on the development of quality of forces, maintaining proper size and number of troops and units under the technology-force combined military system. The tableau above shows that the advanced countries like the UK, Germany, Italy, and Austria spend more defense expenditure per person than the Republic of Korea, although they do not face actual military threats, and that they keep achieving better economic progress than the countries that spend less defense expenditure. Therefore, it would be necessary to adopt the merits of the defense systems of those advanced countries. As we have examined, it would be desirable to maintain the current size and number of troops and units, to promote 'select few' policy with increased defense expenditure, and to strengthen the technology-force combined military system. On the basis of firm national security, the Republic of Korea can develop efficient policies for reunification and prosperity, and jump into the status of advanced countries. Therefore, the plans to reduce troops and units in [Military Reform Plan 2020] should be reexamined. If it is difficult for the ROK army to maintain its size of 655,000 troops because of low birth rate, the plans to establish the prompt mobilization force or to adopt drafting system should be considered for the maintenance of proper number of troops and units. From now on, the Republic of Korean government should develop plans to keep peace as well as to prepare unexpected changes in the Korean peninsular. For the achievement of these missions, some options can be considered. The first one is to maintain the same size of military troops and units as North Korea. The second one is to maintain the same level of military power as North Korea in terms of military force index. The third one is to maintain the same level of military power as North Korea, with the combination of the prompt mobilization force and the troops in active service under the system of technology-force combined military system. At present, it would be not possible for the ROK army to maintain such a large-size military force as North Korea (1,190,000 troops and 86 units). So it would be rational to maintain almost the same level of military force as North Korea with the combination of the troops on the active list and the prompt mobilization forces. In other words, with the combination of the troops in active service (60%) and the prompt mobilization force (40%), the ROK army should develop the strategies to harmonize technology and forces. The Korean government should also be prepared for the strategic flexibility of USFK, the possibility of American policy change about the location of foreign army, radical unexpected changes in North Korea, the emergence of potential threat, surrounding countries' demand for Korean force for the maintenance of regional stability, and demand for international cooperation against terrorism. For this, it is necessary to develop new approaches toward the proper number and size of troops and units. For instance, to prepare for radical unexpected political or military changes in North Korea, the Republic of Korea should have plans to protect a large number of refugees, to control arms and people, to maintain social security, and to keep orders in North Korea. From the experiences of other countries, it is estimated that 115,000 to 230,000 troops, plus ten thousands of police are required to stabilize the North Korean society, in the case radical unexpected military or political change happens in North Korea. In addition, if the Republic of Korea should perform the release of hostages, control of mass destruction weapons, and suppress the internal wars in North Korea, it should send 460,000 troops to North Korea. Moreover, if the Republic of Korea wants to stop the attack of North Korea and flow of refugees in DMZ area, at least 600,000 troops would be required. In sum, even if the ROK army maintains 600,000 troops, it may need additional 460,000 troops to prepare for unexpected radical changes in North Korea. For this, it is necessary to establish the prompt mobilization force whose size and number are almost the same as the troops in active service. In case the ROK army keeps 650,000 troops, the proper number of the prompt mobilization force would be 460,000 to 500,000.