• Title/Summary/Keyword: hand spray

Search Result 143, Processing Time 0.033 seconds

Guidelines for dental clinic infection prevention during COVID-19 pandemic (코로나 바이러스 대유행에 따른 치과 의료 관리 가이드라인)

  • Kim, Jin
    • Journal of Korean Academy of Dental Administration
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Dental settings have unique characteristics that warrant specific infection control considerations, including (1) prioritizing the most critical dental services and provide care in a way that minimizes harm to patients due to delayed care, or harm to personnel from potential exposure to persons infected with the COVID-19 disease, and (2) proactively communicate to both personnel and patients the need for them to stay at home if sick. For health care, an interim infection prevention and control recommendation (COVID-19) is recommended for patients suspected of having coronavirus or those whose status has been confirmed. SARS-CoV-2, which is the virus that causes COVID-19, is thought to be spread primarily between people who are in close contact with one another (within 6 feet) through respiratory droplets that are produced when an infected person coughs, sneezes, or talks. Airborne transmission from person-to-person over long distances is unlikely. However, COVID-19 is a new disease, and there remain uncertainties about its mode of spreads and the severity of illness it causes. The virus has been shown to persist in aerosols for several hours, and on some surfaces for days under laboratory conditions. COVID-19 may also be spread by people who are asymptomatic. The practice of dentistry involves the use of rotary dental and surgical instruments, such as handpieces or ultrasonic scalers, and air-water syringes. These instruments create a visible spray that can contain particle droplets of water, saliva, blood, microorganisms, and other debris. While KF 94 masks protect the mucous membranes of the mouth and nose from droplet spatter, they do not provide complete protection against the inhalation of airborne infectious agents. If the patient is afebrile (temperature <100.4°F)* and otherwise without symptoms consistent with COVID-19, then dental care may be provided using appropriate engineering and administrative controls, work practices, and infection control considerations. It is necessary to provide supplies for respiratory hygiene and cough etiquette, including alcohol-based hand rub (ABHR) with 60%~95% alcohol, tissues, and no-touch receptacles for disposal, at healthcare facility entrances, waiting rooms, and patient check-ins. There is also the need to install physical barriers (e.g., glass or plastic windows) in reception areas to limit close contact between triage personnel and potentially infectious patients. Ideally, dental treatment should be provided in individual rooms whenever possible, with a spacing of at least 6 feet between the patient chairs. Further, the use of easy-to-clean floor-to-ceiling barriers will enhance the effectiveness of portable HEPA air filtration systems. Before and after all patient contact, contact with potentially infectious material, and before putting on and after removing personal protective equipment, including gloves, hand hygiene after removal is particularly important to remove any pathogens that may have been transferred to the bare hands during the removal process. ABHR with 60~95% alcohol is to be used, or hands should be washed with soap and water for at least 20 s.

Effect of Application Method and Concentration of Plant Growth Retardants On Plant Quality of Potted Saxifraga rosacea Moench

  • Park, Yeon Hee;Kim, Yoon Jin;Jung, Hyun Hwan;Kim, Ki Sun
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.3
    • /
    • pp.127-138
    • /
    • 2011
  • Four different plant growth retardants (PGRs), paclobutrazol, flurprimidol, daminozide, and chlormequat, were applied to potted Saxifraga rosacea 'Kumoma' and 'Kumoma-Gusa' plants for control of the growth and flowering. Paclobutrazol (10, 20, 40, $80mg{\cdot}L^{-1}$), flurprimidol (5, 10, 20, $40mg{\cdot}L^{-1}$), daminozide (500, 1000, 2000, $4000mg{\cdot}L^{-1}$), and chlormequat (50, 100, 200, $400mg{\cdot}L^{-1}$) were applied to the plants by a foliar spray or drenching. In 'Kumoma', application of $40mg{\cdot}L^{-1}$ paclobutrazol by a foliar spray or drenching reduced plant height by 12.5 and 12.6 cm, and flower length by 3.4 and 3.3 cm, respectively. On the other hand, in 'Kumoma-Gusa', drenching of paclobutrazol reduced plant height by 10.7 to 12.6 cm and flower length by 2.0 to 3.9 cm with increasing concentration, but the number of florets almost fell to 20 as compared to 40.5 in the control. 'Kumoma-Gusa' plants drenched with $80mg{\cdot}L^{-1}$ paclobutrazol and sprayed with $40mg{\cdot}L^{-1}$ flurprimidol had the shortest heights of 10.7 and 9.9 cm, and floral length of 2.0 and 1.5 cm, respectively. A flurprimidol drenching at $40mg{\cdot}L^{-1}$ delayed the harvest by 3-13 days as compared to the control and the smallest number of florets, 15.6, was observed in this treatment. In both cultivars, chlormequat and daminozide did not effectively influence the growth and flowering. However, number of florets increased to more than 41 at all concentrations and up to 63, the greatest floret number, with chlormequat drench in 'Kumoma-Gusa'. These results demonstrated that over $40mg{\cdot}L^{-1}$ of paclobutrazol or 5 to $20mg{\cdot}L^{-1}$ of flurprimidol could be used as PGRs to control the growth of floral length and flowering for improving potted plant quality in S. rosacea 'Kumoma' and 'Kumoma-Gusa'.

Operator Exposure to Indoxacarb Wettable Powder and Water Dispersible Granule during Mixing/loading and Risk Assessment (Indoxacarb의 수화제 및 입상수화제 살포액 조제 시 농작업자의 노출량 측정 및 위해성 평가)

  • Kim, Eunhye;Hwang, Yon-Jin;Kim, Suhee;Lee, Hyeri;Hong, Soonsung;Park, Kyung-Hun;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.343-349
    • /
    • 2012
  • Exposure and risk assessments were conducted to evaluate the relative safety of mixing/loading work of indoxacarb between wettable powder (WP) and water dispersible granule (WG). Hand exposure was monitored using cotton gloves while inhalation exposure was measured using personal air monitor. Method validation for the exposure monitoring was established successfully through several experiments. Limit of determination and limit of quantitation were 0.25 and 1 ng, respectively. $R^2$ of calibration curve linearity was more than 0.9999 and reproducibility was 0.7-6. Recovery of indoxacarb from gloves, solid sorbent and glass fiber filter at three different levels was 81.5-108.8%. Trapping efficiency and breakthrough tests gave 981.5-108.8% of recovery. During mixing/loading procedure, hand exposure amount (75 percentile of 30 repetitions) for indoxacarb WP was 6 folds (459.8 mg/kg a.i) than that of WG (81.4 mg/kg a.i). This result indicates that WG has less drift than WP thanks to its granular type of formulation. Inhalation amount was $10^{-8}-10^{-7}%$ of spray mixture prepared and $10^{-4}-10^{-3}%$ of hand exposure. In inhalation case, no significant differences were observed between two formulations. Margin of safety was calculated for risk assessment using male Korean average body weight and acceptable operator exposure level as the important exposure factors. Mixing/loading procedures for both of the formulations were considered to be of least risk because calculated MOS values were more than 1.

Decomposition of Eco-friendly Liquid Propellants over Platinum/Hexaaluminate Pellet Catalysts (백금/헥사알루미네이트 펠렛 촉매를 이용한 친환경 액체 추진제 분해)

  • Jo, Hyeonmin;You, Dalsan;Kim, Munjeong;Woo, Jaegyu;Jung, Kyeong Youl;Jo, Young Min;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.371-379
    • /
    • 2018
  • The objective of this study is to develop a platinum/hexaaluminate pellet catalyst for the decomposition of eco-friendly liquid propellant. Pellet catalysts using hexaaluminate prepared by ultrasonic spray pyrolysis as a support and platinum as an active metal were prepared by two methods. In the case of the pellet catalyst formed by loading the platinum precursor onto the hexaaluminate powder and then adding the binder (M1 method catalyst), the mesopores were well developed in the catalyst after calcination at $550^{\circ}C$. However, when this catalyst was calcined at $1,200^{\circ}C$, the mesopores almost collapsed and only a few macropores existed. On the other hand, in the case of a catalyst in which platinum was supported on pellets after the pellet was produced by extrusion of hexaaluminate (M2 method catalyst), the surface area and the mesopores were well maintained even after calcination at $1,200^{\circ}C$. Also, the catalyst prepared by the M2 method showed better heat resistance in terms of platinum dispersion. The effects of preparation method and calcination temperature of Pt/hexaaluminate pellet catalysts on the decomposition of liquid propellant composed mainly of ammonium dinitramide (ADN) or hydroxyl ammonium nitrate (HAN) were investigated. It was confirmed that the decomposition onset temperature during the decomposition of ADN- or HAN- based liquid propellant could be reduced significantly by using Pt/hexaaluminate pellet catalysts. Especially, in the case of the catalyst prepared by the M2 method, the decomposition onset temperature did not show a large change even when the calcination temperature was raised at $1,200^{\circ}C$. Therefore, it was confirmed that Pt/ hexaaluminate pellet catalyst prepared by M2 method has heat resistance and potential as a catalyst for the decomposition of the eco-friendly liquid propellants.

The selection of Post-emergence Herbicides to Control of Poa annua in Kentucky Bluegrass (Kentucky bluegrass 내 새포아풀 방제를 위한 경엽처리제 선발)

  • Hong, Beom-Seok;Tae, Hyun-Sook
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.76-81
    • /
    • 2013
  • This study was performed to find the effective post-emergence herbicides to control of Poa annua that has already emerged from the soil in Kentucky bluegrass. A total of 8 treatments consist of various post-emergence herbicides applied at recommended concentration or lower concentration than recommended concentration to prevent Kentucky bluegrass injury in this study. Methiozolin showed the least injury in Kentucky bluegrass during 40 days after treatments and there were no footprints by methiozolin in creeping bentgrass green during 20 days. However, Poa annua control was 60.4%, which was less than those of other 7 treatments in this study. Both of asulam sodium and iodosulfuron plus asulam sodium exhibited the higher Poa annua control of 81.7% and 82.2% respectively without serious injury in Kentucky bluegrass during 40 days, and they showed a slight footprints damage in creeping bentgrass green. On the other hand, critical Kentucky bluegrass injuries and the vivid and numerous footprints were occurred in treatments of trifloxysulfuron-sodium, foramsulfuron, rimsulfuron and flazasulfuron, even though they were applied with only 1/4 of recommended concentration. Methiozolin is available to reduce gradually Poa annua population on Kentucky bluegrass without severe turfgrass damage. Asulam sodium or iodosulfuron plus asulam sodium could be useful to remove Poa annua by spot treatment but it is prohibited to spray directly on green even spot.

Insecticidal Activity of 7 Herbal Extracts against Black Pine Bast scale, Matsucoccus thunbergianae (솔껍질깍지벌레에 대한 7종류 한약재 추출물의 살충활성)

  • Song, Jin Sun;Lee, Chae Min;Lee, Sang Myeong;Lee, Dong Su;Choi, Young Hwa;Lee, Dong Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.411-418
    • /
    • 2013
  • The black pine bast scale, Matsucoccus thunbergianae is one of the most serious insect pest in Japanese black pine, Pinus thunbergii forest in Korea. Insecticidal activity of 10 folds hot water extracts from 7 herbal plants (Atractylodes lancea, Eugenia caryophyllata, Lonicera japonica, Melia azedarach, Quisqualis indica, Sophora flavescens and Taraxacum mongolicum) were tested against different stage of M. thunbergianae using spray method both in laboratory and field. Efficacies of herbal extracts were different depending on stage of M. thunbergianae. Q. indica sprayed with hand sprayer produced the highest corrected mortality of 95.7% on intermidiated nymph stage, however, A. lancea produced the highest corrected mortality (51.3%) on pupae of M. thunbergianae in laboratory. Q. indica and A. lancea were highly effective against female M. thunbergianae in laboratory, however, corrected mortality was lower than other stage (40.0%). Efficacy of Q. indica was similar to effective insecticide, fenitrothion 50% EC against M. thunbergianae in field trials. These results indicated that Q. indica could be an environmental friendly control agent of M. thunbergianae.

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

COMPARATIVE STUDIES OF THE ADHESIVE QUALITIES OF POLYCARBOXYLATE CEMENTS (카복실레이트계 시멘트의 접착력에 관한 비교 연구)

  • Lee, Han-Moo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.17 no.1
    • /
    • pp.23-34
    • /
    • 1979
  • In this study, the adhesive strength of three commercial polycarboxylate cements to ten types of dental casting alloys, such as gold, palladium, silver, indium, copper, nickel, chromium, and human enamel and dentine were measured and compared with that of a conventional zinc phosphate cement. The $8.0mm{\times}3.0mm$ cylindrical alloy specimens were made by casting. The enamel specimens were prepared from the labial surface of human upper incisor, and the dentine specimens were prepared from the occulusal surface of the human molar respectively. Sound extracted human teeth, which had been kept in a fresh condition since, extraction, were mounted in a wax box with a cold-curing acrylic resin to expose the flattened area. The mounted teeth were then placed in a Specimen Cutter (Technicut) and were cut down under a water spray, and then the flat area on the all specimens were ground by hand with 400 and 600 grit wet silicone carbide paper. Two such specimens were then cemented together face-to-face with freshly mixed cement, and moderate finger pressure was applied to squeeze the cement to a thin and uniform film. All cemented specimens were then kept in a thermostatic humidor cabinet regulated at $23{\pm}2^{\circ}C.$ and more than 95 per cent relative humidity and tested after 24 hours and 1 week. Link chain was attached to each alloy specimen to reduce the rigidity of the jig assembly, and then all the specimens were mounted in the grips of the Instron Universal Testing Machine, and a tensile load was delivered to the adhering surface at a cross head speed of 0.20 mm/min. The loads to which the specimens were subjected were recorded on a chart moving at 0.50 mm/min. The adhesive strength was determined by measuring the load when the specimen separated from the cement block and by dividing the load by the area. The test was performed in a room at $23{\pm}2^{\circ}C.$ and $50{\pm}10$ per cent relative humidity. A minimum of five specimens were tested each material and those which deviated more than 15 per cent from the mean were discarded and new specimens prepared. From the experiments, the following results were obtained. 1) It was found that the adhesive strength of the polycarboxylate cement to all alloys tested was considerably greater than that of the zinc phosphate cement. 2) The adhesive strength of the polycarboxylate cements was superior to the non precious alloys, such as the copper, indium, nickel and chromium alloys, but it was inferior to the precious gold, silver and palladium alloys. 3) Surface treatment of the alloy was found to be an important factor in achieving adhesion. It appears that a polycarboxylate cement will adhere better to a smooth surface than to a rough one. This contrasts with zinc phosphate cements, where a rough helps mechanical interlocking. 4) The adhesion of the polycarboxylate cement with enamel was found superior to its adhesion with dentine.

  • PDF

Response of Korean ginseng (Panax ginseng C. A. Meyer) to 2, 4-D I . Effects of 2, 4-D concentrations on Growth and Root Yield (제초제 2, 4-D에 대한 고려인삼의 반응 I. 2, 4-D의 농도가 인삼의 생육 및 근수량이 미치는 영향)

  • 조재성
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.4
    • /
    • pp.422-427
    • /
    • 1989
  • Weeds may compete detrimentally with the ginseng for moisture and nutrients but hand weeding is the only practical means of eliminating weeds after crop establishment. To define the effects of 2, 4-D herbicide application on the plant growth and root yield of Korean ginseng (Panax ginseng C. A. Meyer). the herbicide 2, 4-D was applied as a foliar spray with the rates of 0.5. 1.0. 1.5 and 2.0 times of the recommended herbicide dosage 70ml/l0a. The Korean ginseng treated with 2, 4-D in the rate of two times concentration was indistinguishable from nontreated plants in visual rating for foliar symptoms. There were no significant differences of the leaf length and width as well as the stem length and diameter in check plants and those recieving 2, 4-D treatments. The. berry maturing in 3 and 4-years old ginseng was not inhibited with 2, 4-D treatment. The root weight of the 4-years old ginseng plant was not reduced by 2, 4-D application of 2 times dosage. However. when the ginseng seedling was treated with 2, 4-D. detrimental phenomena as stem bending and dicoloration of marginal part of seedling leaf were occured but stem bending was recovered in a few days.

  • PDF

Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness (경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가)

  • Lee, Seoung Soo;Kim, Jun Seong;Jung, Yeon-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.248-255
    • /
    • 2020
  • The effects of the coating thickness on the thermal durability and thermal stability of thermal barrier coatings (TBCs) with a gradient coating thickness were investigated using a flame thermal fatigue (FTF) test and thermal shock (TS) test. The bond and topcoats were deposited on the Ni-based super-alloy (GTD-111) using an air plasma spray (APS) method with Ni-Cr based MCrAlY feedstock powder and yttria-stabilized zirconia (YSZ), respectively. After the FTF test at 1100 ℃ for 1429 cycles, the bond coat was oxidized partially and the thermally grown oxide (TGO) layer was observed at the interface between the topcoat and bond coat. On the other hand, the interface microstructure of each part in the TBC specimen showed a good condition without cracking or delamination. As a result of the TS test at 1100 ℃, the TBC with gradient coating thickness was initially delaminated at a thin part of the coating layer after 37 cycles, and the TBC was delaminated by more than 50% after 98 cycles. The TBCs of the thin part showed more oxidation of the bond coat with the delamination of topcoat than the thick part. The thick part of the TBC thickness showed good thermal stability and oxidation resistance of the bond coat due to the increased thermal barrier effect.