• Title/Summary/Keyword: hand pose recognition

Search Result 43, Processing Time 0.023 seconds

Hierarchical Hand Pose Model for Hand Expression Recognition (손 표현 인식을 위한 계층적 손 자세 모델)

  • Heo, Gyeongyong;Song, Bok Deuk;Kim, Ji-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1323-1329
    • /
    • 2021
  • For hand expression recognition, hand pose recognition based on the static shape of the hand and hand gesture recognition based on the dynamic hand movement are used together. In this paper, we propose a hierarchical hand pose model based on finger position and shape for hand expression recognition. For hand pose recognition, a finger model representing the finger state and a hand pose model using the finger state are hierarchically constructed, which is based on the open source MediaPipe. The finger model is also hierarchically constructed using the bending of one finger and the touch of two fingers. The proposed model can be used for various applications of transmitting information through hands, and its usefulness was verified by applying it to number recognition in sign language. The proposed model is expected to have various applications in the user interface of computers other than sign language recognition.

Hand Expression Recognition for Virtual Blackboard (가상 칠판을 위한 손 표현 인식)

  • Heo, Gyeongyong;Kim, Myungja;Song, Bok Deuk;Shin, Bumjoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1770-1776
    • /
    • 2021
  • For hand expression recognition, hand pose recognition based on the static shape of the hand and hand gesture recognition based on hand movement are used together. In this paper, we proposed a hand expression recognition method that recognizes symbols based on the trajectory of a hand movement on a virtual blackboard. In order to recognize a sign drawn by hand on a virtual blackboard, not only a method of recognizing a sign from a hand movement, but also hand pose recognition for finding the start and end of data input is also required. In this paper, MediaPipe was used to recognize hand pose, and LSTM(Long Short Term Memory), a type of recurrent neural network, was used to recognize hand gesture from time series data. To verify the effectiveness of the proposed method, it was applied to the recognition of numbers written on a virtual blackboard, and a recognition rate of about 94% was obtained.

A Study on Hand Recognition in Image for Multimedia System (멀티미디어 시스템을 위한 영상내의 손 인식에 관한 연구)

  • Jung Hye-Won;Yang Hwan-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.2
    • /
    • pp.267-274
    • /
    • 2005
  • In this paper, we proposed an algorithm which cognize hand pose in real time using only image. Hand recognizes using edge orientation histogram which comes under a constant quantity of 2D appearance because hand pose is intricate. This method suit hand pose recognition in real time because it extracts hand space accurately, has little computation quantify, and is less sensitive to lighting change using color information in complicated background. Method which reduces recognition error using principal component analysis method to can recognize through hand shape presentation direction change is explained. A case that hand shape changes by turning 3D also by using this method is possible to recognize. Besides, principal component space creation time is reduced remarkably because edge directional data is used.

  • PDF

Developing Interactive Game Contents using 3D Human Pose Recognition (3차원 인체 포즈 인식을 이용한 상호작용 게임 콘텐츠 개발)

  • Choi, Yoon-Ji;Park, Jae-Wan;Song, Dae-Hyeon;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.619-628
    • /
    • 2011
  • Normally vision-based 3D human pose recognition technology is used to method for convey human gesture in HCI(Human-Computer Interaction). 2D pose model based recognition method recognizes simple 2D human pose in particular environment. On the other hand, 3D pose model which describes 3D human body skeletal structure can recognize more complex 3D pose than 2D pose model in because it can use joint angle and shape information of body part. In this paper, we describe a development of interactive game contents using pose recognition interface that using 3D human body joint information. Our system was proposed for the purpose that users can control the game contents with body motion without any additional equipment. Poses are recognized comparing current input pose and predefined pose template which is consist of 14 human body joint 3D information. We implement the game contents with the our pose recognition system and make sure about the efficiency of our proposed system. In the future, we will improve the system that can be recognized poses in various environments robustly.

Research on Human Posture Recognition System Based on The Object Detection Dataset (객체 감지 데이터 셋 기반 인체 자세 인식시스템 연구)

  • Liu, Yan;Li, Lai-Cun;Lu, Jing-Xuan;Xu, Meng;Jeong, Yang-Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2022
  • In computer vision research, the two-dimensional human pose is a very extensive research direction, especially in pose tracking and behavior recognition, which has very important research significance. The acquisition of human pose targets, which is essentially the study of how to accurately identify human targets from pictures, is of great research significance and has been a hot research topic of great interest in recent years. Human pose recognition is used in artificial intelligence on the one hand and in daily life on the other. The excellent effect of pose recognition is mainly determined by the success rate and the accuracy of the recognition process, so it reflects the importance of human pose recognition in terms of recognition rate. In this human body gesture recognition, the human body is divided into 17 key points for labeling. Not only that but also the key points are segmented to ensure the accuracy of the labeling information. In the recognition design, use the comprehensive data set MS COCO for deep learning to design a neural network model to train a large number of samples, from simple step-by-step to efficient training, so that a good accuracy rate can be obtained.

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.

The Development of a Real-Time Hand Gestures Recognition System Using Infrared Images (적외선 영상을 이용한 실시간 손동작 인식 장치 개발)

  • Ji, Seong Cheol;Kang, Sun Woo;Kim, Joon Seek;Joo, Hyonam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1100-1108
    • /
    • 2015
  • A camera-based real-time hand posture and gesture recognition system is proposed for controlling various devices inside automobiles. It uses an imaging system composed of a camera with a proper filter and an infrared lighting device to acquire images of hand-motion sequences. Several steps of pre-processing algorithms are applied, followed by a background normalization process before segmenting the hand from the background. The hand posture is determined by first separating the fingers from the main body of the hand and then by finding the relative position of the fingers from the center of the hand. The beginning and ending of the hand motion from the sequence of the acquired images are detected using pre-defined motion rules to start the hand gesture recognition. A set of carefully designed features is computed and extracted from the raw sequence and is fed into a decision tree-like decision rule for determining the hand gesture. Many experiments are performed to verify the system. In this paper, we show the performance results from tests on the 550 sequences of hand motion images collected from five different individuals to cover the variations among many users of the system in a real-time environment. Among them, 539 sequences are correctly recognized, showing a recognition rate of 98%.

NATURAL INTERACTION WITH VIRTUAL PET ON YOUR PALM

  • Choi, Jun-Yeong;Han, Jae-Hyek;Seo, Byung-Kuk;Park, Han-Hoon;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.341-345
    • /
    • 2009
  • We present an augmented reality (AR) application for cell phone where users put a virtual pet on their palms and play/interact with the pet by moving their hands and fingers naturally. The application is fundamentally based on hand/palm pose recognition and finger motion estimation, which is the main concern in this paper. We propose a fast and efficient hand/palm pose recognition method which uses natural features (e.g. direction, width, contour shape of hand region) extracted from a hand image with prior knowledge for hand shape or geometry (e.g. its approximated shape when a palm is open, length ratio between palm width and pal height). We also propose a natural interaction method which recognizes natural motion of fingers such as opening/closing palm based on fingertip tracking. Based on the proposed methods, we developed and tested the AR application on an ultra-mobile PC (UMPC).

  • PDF

MPEG-U-based Advanced User Interaction Interface Using Hand Posture Recognition

  • Han, Gukhee;Choi, Haechul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.267-273
    • /
    • 2016
  • Hand posture recognition is an important technique to enable a natural and familiar interface in the human-computer interaction (HCI) field. This paper introduces a hand posture recognition method using a depth camera. Moreover, the hand posture recognition method is incorporated with the Moving Picture Experts Group Rich Media User Interface (MPEG-U) Advanced User Interaction (AUI) Interface (MPEG-U part 2), which can provide a natural interface on a variety of devices. The proposed method initially detects positions and lengths of all fingers opened, and then recognizes the hand posture from the pose of one or two hands, as well as the number of fingers folded when a user presents a gesture representing a pattern in the AUI data format specified in MPEG-U part 2. The AUI interface represents a user's hand posture in the compliant MPEG-U schema structure. Experimental results demonstrate the performance of the hand posture recognition system and verified that the AUI interface is compatible with the MPEG-U standard.

Fast Convergence GRU Model for Sign Language Recognition

  • Subramanian, Barathi;Olimov, Bekhzod;Kim, Jeonghong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1257-1265
    • /
    • 2022
  • Recognition of sign language is challenging due to the occlusion of hands, accuracy of hand gestures, and high computational costs. In recent years, deep learning techniques have made significant advances in this field. Although these methods are larger and more complex, they cannot manage long-term sequential data and lack the ability to capture useful information through efficient information processing with faster convergence. In order to overcome these challenges, we propose a word-level sign language recognition (SLR) system that combines a real-time human pose detection library with the minimized version of the gated recurrent unit (GRU) model. Each gate unit is optimized by discarding the depth-weighted reset gate in GRU cells and considering only current input. Furthermore, we use sigmoid rather than hyperbolic tangent activation in standard GRUs due to performance loss associated with the former in deeper networks. Experimental results demonstrate that our pose-based optimized GRU (Pose-OGRU) outperforms the standard GRU model in terms of prediction accuracy, convergency, and information processing capability.