• Title/Summary/Keyword: hand pose

Search Result 106, Processing Time 0.029 seconds

The General Analysis of an Active Stereo Vision with Hand-Eye Calibration (핸드-아이 보정과 능동 스테레오 비젼의 일반적 해석)

  • Kim, Jin Dae;Lee, Jae Won;Sin, Chan Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.83-83
    • /
    • 2004
  • The analysis of relative pose(position and rotation) between stereo cameras is very important to determine the solution that provides three-dimensional information for an arbitrary moving target with respect to robot-end. In the space of free camera-model, the rotational parameters act on non-linear factors acquiring a kinematical solution. In this paper the general solution of active stereo that gives a three-dimensional pose of moving object is presented. The focus is to achieve a derivation of linear equation between a robot′s end and active stereo cameras. The equation is consistently derived from the vector of quaternion space. The calibration of cameras is also derived in this space. Computer simulation and the results of error-sensitivity demonstrate the successful operation of the solution. The suggested solution can also be applied to the more complex real time tracking and quite general and are applicable in various stereo fields.

The General Analysis of an Active Stereo Vision with Hand-Eye Calibration (핸드-아이 보정과 능동 스테레오 비젼의 일반적 해석)

  • 김진대;이재원;신찬배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.89-90
    • /
    • 2004
  • The analysis of relative pose(position and rotation) between stereo cameras is very important to determine the solution that provides three-dimensional information for an arbitrary moving target with respect to robot-end. In the space of free camera-model, the rotational parameters act on non-linear factors acquiring a kinematical solution. In this paper the general solution of active stereo that gives a three-dimensional pose of moving object is presented. The focus is to achieve a derivation of linear equation between a robot's end and active stereo cameras. The equation is consistently derived from the vector of quaternion space. The calibration of cameras is also derived in this space. Computer simulation and the results of error-sensitivity demonstrate the successful operation of the solution. The suggested solution can also be applied to the more complex real time tracking and quite general and are applicable in various stereo fields.

Creating Deep Learning-based Acrobatic Videos Using Imitation Videos

  • Choi, Jong In;Nam, Sang Hun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.713-728
    • /
    • 2021
  • This paper proposes an augmented reality technique to generate acrobatic scenes from hitting motion videos. After a user shoots a motion that mimics hitting an object with hands or feet, their pose is analyzed using motion tracking with deep learning to track hand or foot movement while hitting the object. Hitting position and time are then extracted to generate the object's moving trajectory using physics optimization and synchronized with the video. The proposed method can create videos for hitting objects with feet, e.g. soccer ball lifting; fists, e.g. tap ball, etc. and is suitable for augmented reality applications to include virtual objects.

Interface of Interactive Contents using Vision-based Body Gesture Recognition (비전 기반 신체 제스처 인식을 이용한 상호작용 콘텐츠 인터페이스)

  • Park, Jae Wan;Song, Dae Hyun;Lee, Chil Woo
    • Smart Media Journal
    • /
    • v.1 no.2
    • /
    • pp.40-46
    • /
    • 2012
  • In this paper, we describe interactive contents which is used the result of the inputted interface recognizing vision-based body gesture. Because the content uses the imp which is the common culture as the subject in Asia, we can enjoy it with culture familiarity. And also since the player can use their own gesture to fight with the imp in the game, they are naturally absorbed in the game. And the users can choose the multiple endings of the contents in the end of the scenario. In the part of the gesture recognition, KINECT is used to obtain the three-dimensional coordinates of each joint of the limb to capture the static pose of the actions. The vision-based 3D human pose recognition technology is used to method for convey human gesture in HCI(Human-Computer Interaction). 2D pose model based recognition method recognizes simple 2D human pose in particular environment On the other hand, 3D pose model which describes 3D human body skeletal structure can recognize more complex 3D pose than 2D pose model in because it can use joint angle and shape information of body part Because gestures can be presented through sequential static poses, we recognize the gestures which are configured poses by using HMM In this paper, we describe the interactive content which is used as input interface by using gesture recognition result. So, we can control the contents using only user's gestures naturally. And we intended to improve the immersion and the interest by using the imp who is used real-time interaction with user.

  • PDF

Comparison Analysis of Four Face Swapping Models for Interactive Media Platform COX (인터랙티브 미디어 플랫폼 콕스에 제공될 4가지 얼굴 변형 기술의 비교분석)

  • Jeon, Ho-Beom;Ko, Hyun-kwan;Lee, Seon-Gyeong;Song, Bok-Deuk;Kim, Chae-Kyu;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.535-546
    • /
    • 2019
  • Recently, there have been a lot of researches on the whole face replacement system, but it is not easy to obtain stable results due to various attitudes, angles and facial diversity. To produce a natural synthesis result when replacing the face shown in the video image, technologies such as face area detection, feature extraction, face alignment, face area segmentation, 3D attitude adjustment and facial transposition should all operate at a precise level. And each technology must be able to be interdependently combined. The results of our analysis show that the difficulty of implementing the technology and contribution to the system in facial replacement technology has increased in facial feature point extraction and facial alignment technology. On the other hand, the difficulty of the facial transposition technique and the three-dimensional posture adjustment technique were low, but showed the need for development. In this paper, we propose four facial replacement models such as 2-D Faceswap, OpenPose, Deekfake, and Cycle GAN, which are suitable for the Cox platform. These models have the following features; i.e. these models include a suitable model for front face pose image conversion, face pose image with active body movement, and face movement with right and left side by 15 degrees, Generative Adversarial Network.

Development of a Hand Pose Rally System Based on Image Processing

  • Suganuma, Akira;Nishi, Koki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.340-348
    • /
    • 2015
  • The "stamp rally" is an event that participants go the round with predetermined points for the purpose of collecting stamps. They bring the stamp card to these points. They, however, sometimes leave or lose the card. In this case, they may not reach the final destination of the stamp rally. The purpose of this research is the construction of the stamp rally system which distinguishes each participant with his or her hand instead of the stamp card. We have realized our method distinguishing a hand posture by the image processing. We have also evaluated it by 30 examinees. Furthermore, we have designed the data communication between the server and the checkpoint to implement our whole system. We have also designed and implemented the process for the registering participant, the passing checkpoint and the administration.

A Handheld 3-Dimensional Motion Tracking Device for Ubiquitous Computing Environment (유비쿼터스 환경에서 사용 가능한 핸드 헬드형 3차원 움직임 추적장치)

  • Park, Myung-Kwan;Lee, Sang-Hoon;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1045-1050
    • /
    • 2005
  • This paper describes a design experience of a low-cost 6 DOF spatial tracker system where relative low accuracy and relatively long ranges, wireless communication will be achieved by means of low cost accelerometers and gyros with contemporary microprocessor. However, there are two key problems; one is the bias drift problem and the other is that single or double integration of acceleration signal suffers not only from noise but also from nonlinear effects caused by gravity. To be specific, beginning and stopping of hand motions needs to be accurately detected to initiate and terminate integration process to get position and pose of the hand from accelerometer and gyro signals, since errors due to noise and/or hand-shaking motions accumulated by integration processes. Several experimental results are shown to validate our proposed algorithms.

A Study on the Design and Implementation of a Camera-Based 6DoF Tracking and Pose Estimation System (카메라 기반 6DoF 추적 및 포즈 추정 시스템의 설계 및 구현에 관한 연구)

  • Do-Yoon Jeong;Hee-Ja Jeong;Nam-Ho Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.5
    • /
    • pp.53-59
    • /
    • 2024
  • This study presents the design and implementation of a camera-based 6DoF (6 Degrees of Freedom) tracking and pose estimation system. In particular, we propose a method for accurately estimating the positions and orientations of all fingers of a user utilizing a 6DoF robotic arm. The system is developed using the Python programming language, leveraging the Mediapipe and OpenCV libraries. Mediapipe is employed to extract keypoints of the fingers in real-time, allowing for precise recognition of the joint positions of each finger. OpenCV processes the image data collected from the camera to analyze the finger positions, thereby enabling pose estimation. This approach is designed to maintain high accuracy despite varying lighting conditions and changes in hand position. The proposed system's performance has been validated through experiments, evaluating the accuracy of hand gesture recognition and the control capabilities of the robotic arm. The experimental results demonstrate that the system can estimate finger positions in real-time, facilitating precise movements of the 6DoF robotic arm. This research is expected to make significant contributions to the fields of robotic control and human-robot interaction, opening up various possibilities for future applications. The findings of this study will aid in advancing robotic technology and promoting natural interactions between humans and robots.

Study on Hand Pose Recognition Using Decomposed Approach with Subgroup-based scheme (소그룹 기반 분류에 의한 손자세 인식에 대한 연구)

  • 장효영;김대진;김정배;변증남
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1499-1502
    • /
    • 2003
  • 본 논문에서는 손 자세 인식을 위해 손 영상을 소그룹으로 나누고 최종적으로 소그룹 내에서 개별 모델로 분류하는 다단계 접근 방식을 취한다. 이 방식은 처음부터 모든 특성치들을 다 구하여 기존에 가지고 있는 모델 모두와 비교하는 대신, 먼저 소그룹으로 분류 후에 해당 소그룹 내의 모델만을 대상으로 비교 연산을 수행한다. 따라서 계산 량을 크게 줄일 수 있을 뿐 아니라, 확장이 용이하며, 각 소그룹 별로 특성화된 처리를 할 수 있으므로 효율적인 인식기의 구현이 가능하다.

  • PDF

Hand pose recognition on Table Top Display (테이블 탑 디스플레이 환경에서 손 형상 인식)

  • Kim, Hyung-Kwan;Lee, Yang-Weon;Lee, Chil-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.719-720
    • /
    • 2008
  • 마우스나 키보드를 벗어나 직관적인 손을 이용하는 테이블 탑 디스플레이는 대부분 Touch 정보를 이용한다. 직접적인 터치에 손 형상 및 제스처를 이용할 수 있다면 보다 자유롭게 시스템을 컨트롤 할 수 있을 것이다. 본 논문에서는 테이블 탑 디스플레이에서의 손형상 인식을 기술한다.

  • PDF