• 제목/요약/키워드: hand pose

검색결과 106건 처리시간 0.021초

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.

손 표현 인식을 위한 계층적 손 자세 모델 (Hierarchical Hand Pose Model for Hand Expression Recognition)

  • 허경용;송복득;김지홍
    • 한국정보통신학회논문지
    • /
    • 제25권10호
    • /
    • pp.1323-1329
    • /
    • 2021
  • 손 표현 인식을 위해서는 손의 정적인 형태를 기반으로 하는 손 자세 인식과 손의 동적인 움직임을 기반으로 하는 손 동작 인식이 함께 사용된다. 이 논문에서는 손 표현 인식을 위해 손가락의 위치와 형태를 기반으로 하는 계층적 손 자세 모델을 제안한다. 손 자세 인식을 위해서는 오픈소스인 미디어파이프를 기반으로 하고, 손가락 상태를 나타내는 모델과 이를 통해 손 자세를 나타내는 모델을 계층적으로 구성하였다. 손가락 모델 역시 손가락 하나의 굽힘과 손가락 두 개의 닿음을 사용하여 계층적으로 구성하였다. 제안하는 모델은 손을 통해 정보를 전달하는 다양한 응용에 사용할 수 있으며, 수화에서의 숫자 인식에 적용하여 그 유용성을 검증하였다. 제안하는 모델은 수화 인식 이외에 컴퓨터의 사용자 인터페이스에서 다양한 응용이 가능할 것으로 기대한다.

Keypoint Detection과 Annoy Tree를 사용한 2D Hand Pose Estimation (Fast Hand Pose Estimation with Keypoint Detection and Annoy Tree)

  • 이희재;강민혜
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.277-278
    • /
    • 2021
  • 최근 손동작 인식에 대한 연구들이 활발하다. 하지만 대부분 Depth 정보를 포함한3D 정보를 필요로 한다. 이는 기존 연구들이 Depth 카메라 없이는 동작하지 않는다는 한계점이 있다는 것을 의미한다. 본 프로젝트는 Depth 카메라를 사용하지 않고 2D 이미지에서 Hand Keypoint Detection을 통해 손동작 인식을 하는 방법론을 제안한다. 학습 데이터 셋으로 Facebook에서 제공하는 InterHand2.6M 데이터셋[1]을 사용한다. 제안 방법은 크게 두 단계로 진행된다. 첫째로, Object Detection으로 Hand Detection을 수행한다. 데이터 셋이 어두운 배경에서 촬영되어 실 사용 환경에서 Detection 성능이 나오지 않는 점을 해결하기 위한 이미지 합성 Augmentation 기법을 제안한다. 둘째로, Keypoint Detection으로 21개의 Hand Keypoint들을 얻는다. 실험을 통해 유의미한 벡터들을 생성한 뒤 Annoy (Approximate nearest neighbors Oh Yeah) Tree를 생성한다. 생성된 Annoy Tree들로 후처리 작업을 거친 뒤 최종 Pose Estimation을 완료한다. Annoy Tree를 사용한 Pose Estimation에서는 NN(Neural Network)을 사용한 것보다 빠르며 동등한 성능을 냈다.

  • PDF

주행 로봇을 위한 단일 카메라 영상에서 손든 자세 검출 알고리즘 (Hand Raising Pose Detection in the Images of a Single Camera for Mobile Robot)

  • 권기일
    • 로봇학회논문지
    • /
    • 제10권4호
    • /
    • pp.223-229
    • /
    • 2015
  • This paper proposes a novel method for detection of hand raising poses from images acquired from a single camera attached to a mobile robot that navigates unknown dynamic environments. Due to unconstrained illumination, a high level of variance in human appearances and unpredictable backgrounds, detecting hand raising gestures from an image acquired from a camera attached to a mobile robot is very challenging. The proposed method first detects faces to determine the region of interest (ROI), and in this ROI, we detect hands by using a HOG-based hand detector. By using the color distribution of the face region, we evaluate each candidate in the detected hand region. To deal with cases of failure in face detection, we also use a HOG-based hand raising pose detector. Unlike other hand raising pose detector systems, we evaluate our algorithm with images acquired from the camera and images obtained from the Internet that contain unknown backgrounds and unconstrained illumination. The level of variance in hand raising poses in these images is very high. Our experiment results show that the proposed method robustly detects hand raising poses in complex backgrounds and unknown lighting conditions.

Enhanced Sign Language Transcription System via Hand Tracking and Pose Estimation

  • Kim, Jung-Ho;Kim, Najoung;Park, Hancheol;Park, Jong C.
    • Journal of Computing Science and Engineering
    • /
    • 제10권3호
    • /
    • pp.95-101
    • /
    • 2016
  • In this study, we propose a new system for constructing parallel corpora for sign languages, which are generally under-resourced in comparison to spoken languages. In order to achieve scalability and accessibility regarding data collection and corpus construction, our system utilizes deep learning-based techniques and predicts depth information to perform pose estimation on hand information obtainable from video recordings by a single RGB camera. These estimated poses are then transcribed into expressions in SignWriting. We evaluate the accuracy of hand tracking and hand pose estimation modules of our system quantitatively, using the American Sign Language Image Dataset and the American Sign Language Lexicon Video Dataset. The evaluation results show that our transcription system has a high potential to be successfully employed in constructing a sizable sign language corpus using various types of video resources.

비마커 증강현실을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기반 손 자세의 추정 (The Estimation of Hand Pose Based on Mean-Shift Tracking Using the Fusion of Color and Depth Information for Marker-less Augmented Reality)

  • 이선형;한헌수;한영준
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.155-166
    • /
    • 2012
  • 본 논문은 비마커 증강현실(Marker-less Augmented Reality)을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 알고리즘 기반 손 자세의 추정 기법을 제안한다. 기존 비마커 증강현실의 연구는 손을 검출하기 위해 단순한 실험 배경에서 피부색상 기반으로 손 영역을 검출한다. 그리고 손가락의 특징점을 검출하여 손의 자세를 추정하므로 카메라에서 검출할 수 있는 손 자세에 많은 제약이 따른다. 하지만, 본 논문은 3D 센서의 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기법을 사용함으로써 복잡한 배경에서 손을 검출할 수 있으며 손 자세를 크게 제약하지 않고 손 영역의 중심점과 임의의 2점의 깊이 값만으로 정확한 손 자세를 추정한다. 제안하는 Mean Shift 추적 기법은 피부 색상정보만 사용하는 방법보다 약 50픽셀 이하의 거리 오차를 보였다. 그리고 증강실험에서 제안하는 손 자세 추정 방법은 복잡한 실험환경에서도 마커 기반 방법과 유사한 성능의 실험결과를 보였다.

멀티미디어 시스템을 위한 영상내의 손 인식에 관한 연구 (A Study on Hand Recognition in Image for Multimedia System)

  • 정혜원;양환석
    • 한국콘텐츠학회논문지
    • /
    • 제5권2호
    • /
    • pp.267-274
    • /
    • 2005
  • 본 논문에서는 별도의 센서 없이 영상만을 이용하여 실시간으로 손 영상을 인식하는 알고리즘을 제안한다. 손은 모양이 매우 복잡하기 때문에 2차원 모양의 불변량에 해당하는 에지의 방향성 히스토그램을 이용하여 인식을 행한다. 이 방법은 복잡한 배경에서 색상정보를 이용하여 손 영역이 정확히 추출되며 계산량이 적고 조명변화에 덜 민감하기 때문에 실시간 손 영상 인식에 적합하다. 본 논문에서는 손의 모양제시 방향이 변하는 경우에도 인식을 가능하게 하기 위해 주성분 분석법을 사용하여 인식오차를 줄이는 방법을 기술한다. 이 방법을 사용함으로써 손 영상이 3차원적으로 회전에 의해 변하는 경우도 인식가능하게 되었다. 또한 에지방향성 데이터를 이용하기에 주성분 공간 생성 시간을 현저히 줄이게 되었다.

  • PDF

NATURAL INTERACTION WITH VIRTUAL PET ON YOUR PALM

  • Choi, Jun-Yeong;Han, Jae-Hyek;Seo, Byung-Kuk;Park, Han-Hoon;Park, Jong-Il
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.341-345
    • /
    • 2009
  • We present an augmented reality (AR) application for cell phone where users put a virtual pet on their palms and play/interact with the pet by moving their hands and fingers naturally. The application is fundamentally based on hand/palm pose recognition and finger motion estimation, which is the main concern in this paper. We propose a fast and efficient hand/palm pose recognition method which uses natural features (e.g. direction, width, contour shape of hand region) extracted from a hand image with prior knowledge for hand shape or geometry (e.g. its approximated shape when a palm is open, length ratio between palm width and pal height). We also propose a natural interaction method which recognizes natural motion of fingers such as opening/closing palm based on fingertip tracking. Based on the proposed methods, we developed and tested the AR application on an ultra-mobile PC (UMPC).

  • PDF

가상 칠판을 위한 손 표현 인식 (Hand Expression Recognition for Virtual Blackboard)

  • 허경용;김명자;송복득;신범주
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1770-1776
    • /
    • 2021
  • 손 표현 인식을 위해서는 손의 정적인 형태를 기반으로 하는 손 자세 인식과 손의 움직임을 기반으로 하는 손 동작 인식이 함께 사용된다. 본 논문에서는 가상의 칠판 위에서 움직이는 손의 궤적을 기반으로 기호를 인식하는 손 표현인식 방법을 제안하였다. 손으로 가상의 칠판에 그린 기호를 인식하기 위해서는 손의 움직임으로부터 기호를 인식하는 방법은 물론, 데이터 입력의 시작과 끝을 찾아내기 위한 손 자세 인식 역시 필요하다. 본 논문에서는 손 자세 인식을 위해 미디어파이프를, 시계열 데이터에서 손 동작을 인식하기 위해 순환 신경망의 한 종류인 LSTM(Long Short Term Memory)을 사용하였다. 제안하는 방법의 유효성을 보이기 위해 가상 칠판에 쓰는 숫자 인식에 제안하는 방법을 적용하였을 때 약 94%의 인식률을 얻을 수 있었다.

RGB 카메라 기반 실시간 21 DoF 손 추적 (RGB Camera-based Real-time 21 DoF Hand Pose Tracking)

  • 최준영;박종일
    • 방송공학회논문지
    • /
    • 제19권6호
    • /
    • pp.942-956
    • /
    • 2014
  • 본 논문은 단안의 RGB 카메라를 이용하는 실시간 손 추적 방법을 제안한다. 손은 높은 degrees of freedom을 가지고 있기 때문에 손 추적은 높은 모호성을 가지고 있다. 따라서 제안하는 방법에서는 손 추적의 모호성을 줄이기 위해서 단계별 손 추적 전략을 채택하였다. 제안하는 방법의 추적 과정은 손바닥 포즈 추적, 손가락 yaw 움직임 추적, 그리고 손가락 pitch 움직임 추적, 세 단계로 구성되어 있으며, 각 단계는 순서대로 수행된다. 제안하는 방법은 손은 평면으로 간주할 수 있다고 가정하고, 평면 손 모델을 이용한다. 평면 손 모델은 손 모델을 현재의 사용자 손 모양에 맞춰서 변경하는 손 모델 재생성을 가능하게 하는데, 이는 제안하는 방법의 강건성과 정확도를 증가시킨다. 그리고 제안하는 방법은 실시간 연산이 가능하고 GPU 기반 연산을 요구하지 않기 때문에, Google Glass와 같은 모바일 장비를 포함한 다양한 환경에 적용가능하다. 본 논문은 다양한 실험을 통해서 제안하는 방법의 성능과 효용성을 입증한다.