• Title/Summary/Keyword: hand forces

Search Result 284, Processing Time 0.027 seconds

Anslysis of tool grip tasks using a glove-based hand posture measurement system

  • Yun, Myung Hwan;Freivalds, Andris;Lee, Myun W.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.69-81
    • /
    • 1995
  • Few studies on the biomechanical analysis of hand postures and tool handling tasks exist because of the lack of appropriate measurement techniques for hand force. A measurement system for the finger forces and joint angles for the analysis of manual tool handling tasks was developed in this study. The measurement system consists of a force sensing glove made from twelve Force Sensitive Resistors and an angle-measuring glove (Cyberglove$^{TM}$, Virtual technologies) with eighteem joint angle sensors. A biomechanical model of the hand using the data from the measurement system was also developed. Systems of computerized procedures were implemented inte- grating the hand posture measurement system, biomechanical analysis system, and the task analysis system for manual tool handling tasks. The measurement system was useful in providing the hand force data needed for an existing task analysis system used in CTD risk evaluation. It is expected that the hand posture measurement developed in this study will provide an efficient and cost-effective solution to task analysis of manual tool handling tasks.s.

  • PDF

Cartesian Coordinate Control of Robot Motion (로보트 운동에 대한 공간 좌표 제어)

  • 노영식;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.5
    • /
    • pp.177-184
    • /
    • 1986
  • An effective cartesian coordinate model is presented to control a robot motion along a prescribed timebased hand trajectory in cartesian coordinates and to provide an adaptive feedback design approach utilizing self-tuning control methods without requiring a detailed mathematical description of the system dynamics. Assuming that each of the hybrid variable set of velocities and forces at the cartesian coordinate level is mutually independent, the dynamic model for the cartesian coordinate control is reduced to first-order SISO models for each degree of freedom of robot hand, including a term to represent all unmodeled effects, by which the number of parameters to be identified is minimized. The self-tuners are designde to minimize a chosen performance criterion, and the computed control forces are resolved into applied joint torques by the Jacobian matrix. The robustness of the model and controller is demonstrated by comparing with the other catesian coordinate controllers.

  • PDF

Determination of Optimal Contact Forces for Multi-Jointed, Multi-Fingered Robotic Hand Considering Contacts of Inner Links (손마디 접촉을 고려한 다지 다관절 로봇손의 최적 접촉력 결정 방법)

  • 백주현;정낙영;서일홍;최동훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.825-835
    • /
    • 1991
  • This paper deals with a case for robotic hands to grasp the objects using inner link contact as well as fingertip contact. And the case is proved to be more efficient than the case of using only fingertip contact in terms of stability and uniform distribution of the contact forces. The general algorithm for the determination of the optimal ocntact force is developed for the soft finger contact as well as the point contact with friction. To show the validity of the proposed algorithm a numerical example is illustated by employing a robotic hand with three fingers each of which has four joints.

Control of Grasp Forces for Robotic Hands Based on Human Capabilities (인간의 손의 능력을 응용한 로봇 핸드의 힘 제어)

  • Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.71-81
    • /
    • 1996
  • This paper discusses a physiological approach motivated by the study of human hands for robot hand force control. It begins with an analysis of the human's grasping behavior to see how humans determine the grasp forces. The human controls the grasp force by sensing the friction force, that is, the weight of the object which is felt on his hand, but when slip is detected by sensing skin acceleration, the grasp force becomes much greater than the minimum force required for grasping by adding the force which is proportional to the acceleration. And two methods that can predict when and how fingers will slip upon a grasped object are considered. To emulate the human's capabilities, we propose a method for determination of as grasp force, which uses the change in the friction force. Experimental results show that the proposed method can be applied to control of robot hands to grasp objects of arbitrary weight stably without skin-like slip sensors.

  • PDF

Determination of optimal contact forces for multi-fingered robotic hands (다지 다관절 로봇 손의 최적 접촉력 결정 방법)

  • 백주현;서일홍;최동훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.52-56
    • /
    • 1990
  • An algorithm is proposed to determine the optimal contact forces of robotic hands, where the soft finger contact as well as the frictional point contact are considered. Especially, the algorithm can be efficiently applied to the case of multi-point contact by inner-link as well as fingertip. To show the validities of the algorithm, several numerical exampies are presented by employing a robotics hand with three fingers each of which has four joints.

  • PDF

Knuckle Design of Hand-made Electric Vehicle Based on Vehicle Dynamics Simulation (차량 동역학 모델 해석에 기반한 자작 전기차 너클의 설계)

  • Lee, C.S.;Choi, H.S.;Kwon, Y.S.;Lee, T.S.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.947-956
    • /
    • 2018
  • This research has been conducted to design upright parts of hand-made vehicles with the purpose of reducing material and machining cost while ensuring structural safety. Aluminum knuckles were modelled with three parts in order to enhance design flexibility as well as to reduce CNC machining cost. A vehicle model was constructed in CAD program and simulated in ADAMS View in order to estimate joint forces developing during 20 degree step steering condition at 60km/h. The joint forces obtained in the vehicle dynamics simulation were used for the structural analysis in ANSYS and dimensions of knuckle parts were adjusted until the lowest safety factor reached 2.0. The weight of knuckle decreased by 50% compared to the previous version that was designed without the structural analysis. The overall manufacturing cost decreased by 33% due to the reduction in the material as well as the CNC machining effort.

A Study on Rotary Weeding Blade Installation Angle for Reduction of Hand Vibration in Working Type Cultivator

  • Kwon, Tae Hyeong;Kim, Joonyong;Lee, Chungu;Kang, Tae Gyoung;Lee, Byeong-Mo;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • Purpose: Walking type cultivator used for weeding generated excessive handle vibration as well as bouncing motion depending on the weeding speed. This research was conducted to define a design factor of the rotary weeding blades for reducing soil reaction forces as well as hand vibration. Methods: The motion and forces acting on the rotary blades were reviewed to find out the most influencing parameter on hand vibration. The installation angle (IA) of the blade was selected and analyzed to determine the condition of no reaction force less. For removing the unnecessary upward soil reaction, the design factor theory of weeding blade was suggested based on geometrics and dynamics. For evaluation of design factor theory, the experiment in situ was performed base on ISO 5349:1. The vibration $a_{hv}$ and theoretical value $X_{MF}$ were compared with two groups that one was positive group ($X_{MF}$ > 0) and the other was negative group ($X_{MF}$ < 0). Results: $X_{MF}$ was derived from rotational velocity, forward velocity, disk diameter, weeding depth, blade's width and IA of blade. Two groups had significant difference (p < 0.05). In aspect of the group mean total exposure duration, positive group was 17.53% bigger than negative group. When disk radius 100, 150 and 200 mm, minimum IAs were $4{\sim}27^{\circ}$, $3{\sim}15^{\circ}$ and $2{\sim}10^{\circ}$, respectively. A spread sheet program which calculated XMF was developed by Excel 2013. Conclusions: According to this result, minimum IA of weeding blade for soil reaction reduction could be obtained. For reduction hand-arm vibration and power consumption, minimum IA is needed.

A study of human grasping ability and its application to a robot hand

  • Kim, Ilhwan;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1774-1778
    • /
    • 1991
  • In this paper, we discuss the smooth hand-over of an object from a man to a robot and vice versa. In order for a robot to grasp an object or release a grasped object stably without using object model, as a man does, one of the basic approaches is the physiological method motivated by the study of human hands. So, we analyze human's grasping behavior by measuring grasp and friction forces simultaneously as a man grasps a experimental device which is designed for grasping or hand-over. Also, we investigate two methods that can predict when and bow fingers will slip upon a grasped object. And then, we propose a method of the hand-over of an object between a man and a robot by applying human's capability to a robot hand control.

  • PDF

Vibration Damping Characteristics of the Powered Hand Tools on Hand-Arm System (손-팔 시스템에 전달되는 전동수공구의 진동감쇠 특성)

  • 장규표;김길주;이동춘
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.43-52
    • /
    • 1999
  • In this study, the vibration damping characteristics of the powered hand tools transmitted in hand-arm system were examined and compared. The types of powered tools for the experiment are general typed drill, impact drill, grinder, and wire brush. To analyze the characteristics of vibration damping, the magnitude of acceleration of vibration on X, Y, and Z direction at tool, hand, wrist, and the joint between forearm and upper arm were measured respectively. The results indicated that impact drill generated the highest value of acceleration of vibration among the four types of tools used in the experiments. The highest value of the amount of acceleration of vibration was found in the direction of Y. And the amount of acceleration of vibration was significantly affected by the type of tool, type of work, and pushing forces. As become the more distant from the tool, the smaller the amount of acceleration of vibration. Also, the bigger the pushing force at the tool, the higher the acceleration of vibration.

  • PDF

Comparison of Three Existing Methods for Predicting Compressive Force on the Lumbosacral Disc (들기작업 설계와 평가를 위한 요천추의 Compressive Force 예측모형 비교연구)

  • Kee, Do-Hyung;Chung, Min-K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.581-591
    • /
    • 1995
  • The main objective of this study is to compare three representative methods predicting compressive forces on lumbosacral disc : LP-based method, double LP-based method and EMG-assisted method. Two subjects simulated lifting tasks performed in the refractories industry, in which vertical and horizontal distance, and weight of load were varied. To calculate the L5/S1 compressive forces, EMG signals from six trunk muscles were measured and postural data and locations of load were recorded using the Motion Analysis System. The EMG-assisted model was shown to reflect well all three factors considered here. On the other hand, the compressive forces of the LP-based model and the double LP-based model were only significantly affected by weight of load. In addition, lowly positive correlation was observed between compressive forces of the EMG-assisted model and lifting index(LI) of 1991 NIOSH lifting equation. From this results, it can be concluded that compressive forces on L5/S1 by the EMG-assisted method should be used as biomechanical criterion in order to evaluate risk of jobs precisely, and LI can not evaluate risk of lifting tasks fully.

  • PDF