• 제목/요약/키워드: hand force

검색결과 823건 처리시간 0.027초

The Effects of Age, Gender, and Target Force Level on Controlled Force Exertion Tasks

  • Kong, Yong-Ku;Lee, Sung Yong;Kim, Dae-Min;Choi, Kyeong-Hee
    • 대한인간공학회지
    • /
    • 제36권1호
    • /
    • pp.53-67
    • /
    • 2017
  • Objective: The purpose of this study is to build basic data to systematically develop a hand function evaluation tool by determining the effects of age, gender and target force level on the difference in hand function according to the target force level. Background: Precise and objective evaluation of hand functionality is a very important factor in quantifying treatment progress in patients or elderly people, and in verifying treatment effects. However, most hand function evaluations lack objectivity and accuracy, and therefore it is difficult to properly treat patients according to the given situation. Method: Sixteen healthy subjects (eight elderly and eight young people) participated in this study to evaluate the effects of age, gender, and target force level on tracking performance through rRMSE in terms of the tracking force and actual exerted force, by carrying out a task of maintaining six different target force levels for 20 seconds. Results: The result of this experiment indicated that elderly people and women had a lower ability to maintain a certain level of force than young people and men by 16% and 10%, respectively. The target force level results showed that the tracking error of the lowest force level (5% MVC) was significantly higher than that of 15% MVC, which in turn showed a higher tracking error than that of the higher target force levels. Conclusion: The results of this study can thus be utilized to develop a rehabilitation program for elderly people or other patients. Application: The authors expect that the results of the present study will be valuable to develop a rehabilitation program and hand function evaluation tool.

힘반향 Hand Controller 설계 (Designing a Force-Reflcting Hand Controller)

  • 김기호;김승호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.594-597
    • /
    • 1995
  • A hand controller in teleoperation is a man-machine interface device that provides real-time interaction between a human operator at control site and a slave manipulator at remote site. In this paper, we examine the design issure related to various types of hand controllers in use. Emphasis is placed on bilateral hand controllers and their design parameters. We describe the design of a new 6 degree-of-freedom universal force-reflecting hand controller to control a remote Schilling Titan manipulator. This hand controller allows the operstor to maintain spatial corresponence in remote manipulative operation and fell a sense of contact with the environment. Finally, we demonstrate the graphic simulation of the hand controller to verify its design characteristics.

  • PDF

지능형 로봇손을 위한 손가락 힘센서 개발 (Development of Force Sensors for the Fingers of an Intelligent Robot's Hand)

  • 김갑순
    • 센서학회지
    • /
    • 제23권2호
    • /
    • pp.127-133
    • /
    • 2014
  • This paper describes a design and manufacture of a two-axis force sensor and a single-axis force sensor for the fingers of an intelligent robot's hand. The robot's finger is composed of a two-axis force sensor, a first knuckle, a single-axis force sensor, a second knuckle, a spring, a motor of first knuckle, a motor of second knuckle, and so on. The two-axis force sensor attached to the first knuckle and the single-axis force sensor attached to the second knuckle were designed and manufactured, and the characteristics test of two sensors was carried out. As a test results, the interference error of the two-axis force sensor was less than 0.68%, the repeatability error of each sensor was less than 0.02%, and then the non-linearity was less than 0.03%. It is thought that the sensors can be used for the fingers of the intelligent robot's hand for rehabilitation exercise of finger patients.

Analysis of tool grip tasks using a glove-based hand posture measurement system

  • Yun, Myung-Hwan;Freivalds, Andris;Lee, Myun-W.
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1994년도 춘계공동학술대회논문집; 창원대학교; 08월 09일 Apr. 1994
    • /
    • pp.596-605
    • /
    • 1994
  • An efficient measurement and evaluation system for hand tool tasks will provide a practical solution to the problem of designing and evaluating manual tool tasks in the workplace. Few studies on the biomechanical analysis of hand postures and tool handling tasks exist because of the lack of appropriate measurement techniques for hand force. A measurement system for the finger forces and joint angles for analysis of manual tool handling tasks was developed in this study. The measurement system consists of a force sensing glove made from twelve Force Sensitive Resistors and an angle-measuring glove (Cyberglove$\^$TM/, Virtual technologies) with eighteen joint angle sensors. A biomechanical model of the hand using the data from the measurement system was also developed. Systems of computerized procedures were implemented integrating the hand posture measurement system, biomechanical analysis system, and the task analysis system for manual tool handling tasks. The measurement system was useful in providing the hand force data needed for an existing task analysis system used in CTD risk evaluation. It is expected that the hand posture measurement developed in this study will provide an, efficient and cost-effective solution to task analysis of manual tool handling tasks. These tasks are becoming increasingly important areas of occupational health and safety of the country.

적외선 소자 기반의 촉각센서를 가진 근전의수 개발 (Development of Myoelectric Hand with Infrared LED-based Tactile Sensor)

  • 정동현;추준욱;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제15권8호
    • /
    • pp.831-838
    • /
    • 2009
  • This paper proposes an IR (infrared) LED (Light Emitting Diode)-based tactile fingertip sensor that can independently measure the normal and tangential force between the hand and an object. The proposed IR LED-based tactile sensor has several advantages over other technologies, including a low price, small size, and good sensitivity. The design of the first prototype is described and some experiments are conducted to show output characteristics of the proposed sensor. Furthemore, the effectiveness of the proposed sensor is demonstrated through anti-slip control in a multifunction myoelectric hand, called the KNU Hand, which includes several novel mechanisms for improved grasping capabilities. The experimental results show that slippage was avoided by simple force control using feedback on the normal and tangential force from the proposed sensor. Thus, grasping force control was achieved without any slippage or damage to the object.

Design of a Robot's Hand with Two 3-Axis Force Sensor for Grasping an Unknown Object

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권3호
    • /
    • pp.12-19
    • /
    • 2003
  • This paper describes the design of a robot's hand with two fingers for stably grasping an unknown object, and the development of a 3-axis force sensor for which is necessary to constructing the robot's fingers. In order to safely grasp an unknown object using the robot's fingers, they should measure the forces in the gripping and in the gravity directions, and control the measured forces. The 3-axis force sensor should be used for accurately measuring the weight of an unknown object in the gravity direction. Thus, in this paper, the robot's hand with two fingers for stably grasping an unknown object is designed, and the 3-axis force sensor is newly modeled and fabricated using several parallel-plate beams.

Optimal Grip Span of A-type Pliers in a Maximum Gripping Task

  • Kong, Yong-Ku;Jung, Jin Woo;Kim, Sangmin;Jung, Heewoong;Yoo, Hakje;Kim, Dae-Min;Kang, Hyun-Sung
    • 대한인간공학회지
    • /
    • 제32권6호
    • /
    • pp.511-516
    • /
    • 2013
  • Objective: The objective of this study is designing an optimal hand tool through maximum grip force study accordance to the hand grip span. Background: In order to prevent musculoskeletal diseases, studies on hand tool design are proceeding based on grip strength, finger force, and contribution of individual finger force on total grip strength. However, experimental apparatus using a tool that is actually used in work place was almost non-existent. Method: 19 males were participated in an experiment. Using the load cell inserted real plier, finger force, grip strength, and subjective discomfort rate of both hands (dominant and non-dominant) were measured in 5 different hand grip span(45mm, 50mm, 60mm, 70mm, and 80mm). Results: There was significant difference(p<0.001) of total grip strength, individual finger force and subjective discomfort rating according to various hand grip span(45, 50, 60, 70, and 80mm). Also, statistically significant different(p<0.001) was shown between the dominant hand and non-dominant hand. In addition, individual finger force in maximum grip was in order of middle finger, ring finger, index finger, and little finger. Conclusion: Optimal grip span of pliers that exerting maximum grip strength is 50~60mm. Application: This finding is expected to be used for designing proper pliers.

들기 작업할 때 자세의 변화에 따른 악력과 지면 반발력의 상관관계 (The Relationship between Grip Strength and Ground Reaction Force by Change of Position when Lifting Tasks)

  • 정상용;강진우;구정완
    • 대한인간공학회지
    • /
    • 제28권3호
    • /
    • pp.41-47
    • /
    • 2009
  • The purpose of this study, during the lifting task was researching the difference and a relationship between the ground reaction force and the grip strength by change of position. After grip strength has measured in symmetry position and asymmetry position at 45cm and 75cm of height of hand, ground reaction force was measured by same attitude lifting wooden box. We analyzed the difference of grip strength and ground reaction force in each position change. The results of grip strength, the grip strength of both hand were significant difference that in study subject symmetry and asymmetry position (p<0.01). The results of symmetry lifting task, the study subjects was significant difference of the ground reaction force difference by height (p<0.05). Asymmetry lifting task was significant difference of ground reaction force difference by direction of rotation was changed (p<0.01). The result of it will rotate with non-dominant hand side of lifting tasks from height 75cm where it easily maintains a balance possibility and decreasing the load of the hand. Therefore, from the workshop in the work people, it will be between the height 75cm and non-dominant hand side of trunk rotatory direction in the lifting tasks. Future study is necessary researched about the change of grip strength when the height of the hand is higher, and the difference of the ground reaction force when the change of weight.

경량 의수용 SMA 구동식 생체모방 손가락 모듈 (SMA-driven Biomimetic Finger Module for Lightweight Hand Prosthesis)

  • 정성윤;문인혁
    • 제어로봇시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.69-75
    • /
    • 2012
  • This paper proposes a biomimetic finger module to be used in a lightweight hand prosthesis. The finger module consists of finger skeleton and an actuator module driven by SMA (Shape Memory Alloy). The prototype finger module can perform flexion and extension motions; finger flexion is driven by a contraction force of SMA, but it is extended by an elastic force of an extension spring inserted into the finger skeleton. The finger motions are controlled by feedback of electric resistance of SMA because the finger module has no sensors to measure length and angle. Total weight of a prototype finger module is 30g. In experiments the finger motions and finger grip force are tested and compared with simulation results when a constant contraction force of SMA is given. The experimental results show that the proposed SMA-driven finger module is feasible to the lightweight hand prosthesis.

근전의수의 제어시스템에 관한 연구 (A Study on the Control System of Myoelectric Hand Prosthesis)

  • 최기원;추준욱;최규하
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.214-221
    • /
    • 2007
  • This paper presents a myoelectric hand prosthesis(MHP) with two degree of freedom(2-DOF), which consists of a mechanical hand, a surface myoelectric sensor(SMES) for measuring myoelectric signal, a control system and a charging battery. The actuation for the 2-DOF hand functions such as grasping and wrist rotation was performed by two DC-motors, and controlled by myoelectric signal measured from the residual forearm muscle. The grip force of the MHP was automatically changed by a mechanical automatic speed reducer mounted on the hand. The skin interface of SMES was composed of the electrodes using the SUS440 metal in order to endure a wet condition due to the sweat. The sensor was embedded with a amplifier and a filter circuit for rejecting the offset voltage caused by power line noises. The control system was composed of the grip force sensor, the slip sensor, and the two controllers. The two controllers were made of a RISC-type microprocessor, and its software was executed on a real-time kernel. The control system used Force Sensing Resistors, FSR, as slip pick-ups at the fingertip of a thumb and the grip force information was obtained from a strain-gauge on the lever of the MHP. The experimental results were showed that the proposed control system is feasible for the MHP.