• Title/Summary/Keyword: half-bridge converter

Search Result 373, Processing Time 0.022 seconds

DC-Link Voltage Unbalancing Compensation of Four-Switch Inverter for Three-Phase BLDC Motor Drive (3상 BLDC 전동기 구동을 위한 4-스위치 인버터의 DC-Link 전압 불평형 보상)

  • Park, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Lee, Su-Won;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.391-396
    • /
    • 2009
  • In this paper, a control algorithm for DC-Link voltage unbalancing compensation of a four-switch inverter for a three-phase BLDC motor drive is proposed. Compared with a conventional six-switch inverter, the split source of the four-switch inverter can be obtained by splitting DC-link capacitor into two capacitors to drive the three phase BLDC motor. The voltages across each of two capacitors are not always equal in steady state because of the unbalance in the impedance of the DC-link capacitors $C_1$ and $C_2$ or the variable current flowed into the capacitor's neutral point in motor control. Despite the unbalance, if the BLDC motor may be run for a long time the voltage across one of the capacitors is more increased. So the unbalance in the capacitors voltages will be accelerated. As a result, The current ripple and torque ripple is increased due to the fluctuation of input current which flows into 3-phase BLDC motor. According to that, the vibration of motor will be increased and the whole system will be instable. This paper presents a control algorithm for DC-Link voltage unbalancing compensation. The sampling from the voltages across each of two capacitors is used to perform the voltage control of DC-Link by using the feedforward controller.

Characteristics analysis of time sharing method VVVF type high frequency resonant inverter (시분할 방식 VVVF형 고주파 공진 인버터의 특성해석)

  • 조규판;원재선;남승식;심광렬;배영호;김동희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.20-28
    • /
    • 2002
  • This paper describes the time sharing type high frequency resonant inviter can be used as power of induction heating. This closed inverter can be obtained output frequency three times than switching frequency by composing three unit inviter of conventional Half-Bridge serial resonant inverter in parallel with input power source also, this reduce switching loss because it has ZVS function. The analysis of the proposed circuit is generally described by using the normailized proposed parameters. The principle of basic operating and the its charasteristics are extimated by the parameters such as switching frequency($\mu$), the variation of Phase angle($\phi$) of Phase-shift. Experimental results are presented to verify theoretical discussion. This preposed inverter will be able to be prastically used as a power supply in various fields as induction, heating application, DC-DC converter etc.

A Study on Low Power Energy Transfer Circuits of the Non Contact Method by means of Solar Generation (태양광 발전에 의한 비접촉 방식 저 전력 에너지 전송회로에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Kim, Jong-Rae;Choi, Gi-Ho;Kim, Jin-Seon
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2014
  • In this paper, it is about to non-contact wireless power transmission according to various conditions of self induction principle between the two planar coils at a transmission unit and a receiving unit based on the theory of wireless power transmission. The experiments are occurred in order to power transfer of noncontact method from designed wireless circuits in the primely coil and secondary coil, and the applying to Half Bridge Resonant converter transmission unit and receiving unit. and that were able to prepared circumstance to calculate of the output voltage and power source. The main power of the inductive coupling the resonant converter at the transmission unit is converted electrical energy using the solar cell module and artificial light source (halogen lamp) as a replace light and received 24 V power supply from solar power was used a input power source for the wireless power transmission device. Experimental results, to received of power is used to illuminate the lighting and to charge the battery in receiving circuit.And the wireless power transmission efficiency measured at the output side of the transmission unit is obtained about 70% to 89% compared to input power of receiving unit.In addition, efficiency were tested through ID verification method and comparing the phase difference between the voltage when foreign substances interfere with wireless power transmission.