• Title/Summary/Keyword: half bridge converter

Search Result 373, Processing Time 0.03 seconds

Device Suitability Analysis by Comparing Performance of SiC MOSFET and GaN Transistor in Induction Heating System (유도 가열 시스템에서 SiC MOSFET과 GaN Transistor의 성능 비교를 통한 소자 적합성 분석)

  • Cha, Kwang-Hyung;Ju, Chang-Tae;Min, Sung-Soo;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.204-212
    • /
    • 2020
  • In this study, device suitability analysis is performed by comparing the performance of SiC MOSFET and GaN Transistor, which are WBG power semiconductor devices in the induction heating (IH) system. WBG devices have the advantages of low conduction resistance, switching losses, and fast switching due to their excellent physical properties, which can achieve high output power and efficiency in IH systems. In this study, SiC and GaN are applied to a general half-bridge series resonant converter topology to compare the conduction loss, switching loss, reverse conduction loss, and thermal performance of the device in consideration of device characteristics and circuit conditions. On this basis, device suitability in the IH system is analyzed. A half-bridge series resonant converter prototype using the SiC and GaN of a 650-V rating is constructed to verify device suitability through performance comparison and verified through an experimental comparison of power loss and thermal performance.

A Study of the High Voltage Power Supply using a Sixfold Voltage-Multiplying Rectifier (6배압 정류기를 이용한 고전압 전원장치에 관한 연구)

  • Ahn, Tae-Young;Gil, Yongl-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.19-26
    • /
    • 2015
  • This paper presents design, fabrication, and performance evaluation of a high voltage power supply for Carbon Nano Tube-based planar light sources. The proposed power supply employs an LLC resonant half-bridge converter and a sixfold voltage-multiplying rectifier. Steady-state characteristics of the voltage-multiplying rectifier are analyzed and used to derive the input-to-output voltage conversion ratio of the power supply. The input-to-output frequency response characteristics of the LLC tank circuit are analyzed and utilized in designing a proto-type power supply which produces a 15 KV output using a 400 V input source. The high-voltage transformer is fabricated using a sectional bobbin structure with an epoxy impregnation, in order to provide sufficient insulation for high voltage operations. The performance of the proposed power supply is confirmed with stable and reliable operations at the 15 KV output from no load to nominal load conditions. The proposed power supply is well suited as an electric ballast required stable operations of Carbon Nano Tube-based planar light sources.

Contactless Power Supply for DC Power Service in Hybrid Home Generation System (수용가 직류 서비스를 위한 무접점 전원장치)

  • Chung, Bong-Geun;Kang, Sung-In;Kim, Yoon-Ho;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.174-182
    • /
    • 2007
  • Among the alternative energy sources, the solar energy is recognized as an important energy source and its application is increasing. Especially in future, the hybrid solar energy generation system with battery will be widely used as an independent distributed power generation system. In this paper, a solar power hybrid home generation system using a contactless power supply (CPS) that can transfer an electric power without any mechanical contact by using magnetic coupling instead of the power transfer by directly supplying the DC power to the home electric system is proposed. The proposed system consists of a ZVS boost converter, a half bridge LLC resonant converter and contact-less transformer.

Analysis of Parallel-Series 2 Transformer Half Bridge Converter without Output Inductor (출력 Inductor를 없앤 Parallel-Series 2 Transformer Half Bridge Converter)

  • Lee, S.W.;Lee, J.H.;Kim, Du-Ho;Cho, B.H.;Kim, W.S.;Lee, J.H.;Yang, C.S.
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.189-190
    • /
    • 2012
  • 최근 전기 자동차가 현실화 되면서 자동차 내부의 Li-Ion 배터리와 전장 부품들 및 납축전지 간의 에너지를 변환하는 회로에 대한 요구가 커지고 있다. 이 회로는 높은 전압을 갖는 Li-Ion 배터리와 낮은 구동 전압을 갖는 다른 전장 부품들로 인해 출력 단이 대 전류를 취한다는 특징을 갖고 있는데 이로 인하여 출력 단의 도통 손실을 줄이기 위한 연구들이 계속되고 있다. 본 논문은 기존의 2 Transformer 형식의 브릿지 컨버터를 Parallel-Series로 연결시킨 회로를 제안하고 이 회로의 동작을 분석하였다. 제안한 회로는 2차 측에 인덕터가 존재하지 않는 Current-Fed방식으로 구동 되며, 이를 통해 도통 손실을 감소 시켰으며, 2차 측을 Series 형태로 쌓아 배터리 연계 시스템에서 문제가 되었던 Wide Range 입. 출력 시스템에서의 동작 문제를 해결하였다.

  • PDF

A Characteristic Analysis of DC-DC Converter linked LCC type High Frequency Resonant Inverter (LCC형 고주파 공진 인버터 링크 DC-DC 컨버터의 특성해석)

  • Nam, Seung-Sik;Ro, Chae-Gyun;Lee, Dal-Hae;Seo, Cheol-Sik;Hwang, Gye-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2007-2009
    • /
    • 1997
  • This paper proposes the LCC type high frequency resonant DC-DC converter using Power MOSFET as switching devices, and describes the characteristics and operating principles. LCC converter has the resonant capacitor instead of a source decoupling capacitor in the conventional half bridge parallel resonant converter. We performed an experiment to prove the propriety of proposed converter.

  • PDF

Design of a 49kW high efficiency bidirectional DC-DC converter for charge and discharge of high voltage battery in HEV (하이브리드 자동차 고전압 배터리 충, 방전을 위한 49kW급 고효율 양방향 DC/DC 컨버터 설계)

  • Yang, Jin-Young;Yoon, Chang-Woo;Park, Sung-Sik;Choi, Se-Wan;Park, Rae-Kwan;Chang, Seo-Geon
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.21-23
    • /
    • 2007
  • In this paper a high efficiency bi-directional DC-DC converter for hybrid vehicles is proposed. The proposed converter a three-phase half-bridge interleaved ZVS converter, is designed to have high efficiency in the main operation range. The component ratings are calculated, the actual devices are selected, and the efficiency analysis has been performed to determine optimal ZVS range. The input and output current ripples are significantly reduced due to the interleaved operation. The dual loop control for the interleaved three-phase converter is also presented. To confirm the proposed convert ter, The simulation and experimental results are presented.

  • PDF

A Novel PFC AC/DC Converter for Reducing Conduction Losses (도통손실 저감을 위한 새로운 역률 보상 AC/DC 컨버터)

  • 강필순;김광태;홍순일;김철우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.273-278
    • /
    • 1999
  • This paper presents a novel Power Factor Corrected(PFC) single-stage AC/DC Half-Bridge converter, which features discontinuous conduction mode(DCM) and soft-switching. The reduced conduction losses are achieved by the employment of a novel power factor correction circuitry, instead of the conventional configuration composed of a front-end rectifier followed by a boost converter. To identify the validity of the proposed converter, simulated results of 500[W] converter with 100[V] input voltage and 50[V] output voltage are presented.

  • PDF

ZVZCS Single-Stage Power Factor Corrected Converter (영전압, 영전류 스위칭 1단 방식 역률 보상 AC/DC 컨버터)

  • Kang, Feel-Soon;Park, Sung-Jun;Kwon, Soon-Jae;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1348-1350
    • /
    • 2000
  • Zero-voltage and zero-current switched single-stage approach with high power factor is presented to reduce the switching losses and to achieve sinusoidal, unity power factor input currents. This single-stage approach, which combines a boost converter used as PFC with a half-bridge converter used as do to do conversion into one power stage, has a simple structure and low cost. At the same time, since the switches of the proposed converter are designed to be turned on at zero-voltage and off at zero-current, the switching losses could be reduced considerably. Detailed analysis and experimental results are presented on the proposed converter, which is operated at constant switching frequency and in discontinuous conduction mode.

  • PDF

A Study On Power Factor Correction of SMAW(shielded metal-arc welding) Using Single Phase AC/DC Boost Converter (단상 AC/DC 승압형 컨버터를 이용한 피복 아크 용접기 역률 개선에 관한 연구)

  • Yu Y. J.;Kim L. H.;Kim J. H.;Won C. Y.;Kim Y. R.;Lee S. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.556-559
    • /
    • 2001
  • In this paper, we proposed AC/DC boost converter to improve input current harmonic reduction in SMAW(shielded metal-arc welding). The proposed harmonic reduction with the boost converter design and the UC2854 integrated circuit which controls the converter, The topology of welding power supply is made of a pair of boost converter and welder half-bridge IGBT inverter. The voltage arc is modeled by a variable resistance in series with a voltage source. The results has been confirmed by PSIM simulation tool. The simulation results show that input at current is nearly sinusoidal with low harmonic contents and sinusoidal input current waveform at high power factor.

  • PDF

Cost-Effective Converters for Micro Wind Turbine Systems using PMSG

  • Park, Hong-Geuk;Lee, Dong-Choon;Kim, Heung-Geun
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • This paper proposes a low-cost power converter for micro wind turbine systems using permanent magnet synchronous generators (PMSG). The proposed converter consists of a two-leg three-phase PWM inverter for the generator control and a single-phase half-bridge PWM converter which is connected to the utility grid. For the two separate DC-link voltages, a balancing control is added and the adverse effect of the DC-link voltage ripples on the inverter output voltage is compensated. The control performance of the proposed converter topology for the micro wind turbine system is shown by the simulation results using PSIM software.