• Title/Summary/Keyword: hair growth inductive

Search Result 4, Processing Time 0.015 seconds

Flavonoid Silibinin Increases Hair-Inductive Property Via Akt and Wnt/β-Catenin Signaling Activation in 3-Dimensional-Spheroid Cultured Human Dermal Papilla Cells

  • Cheon, Hye In;Bae, Seunghee;Ahn, Kyu Joong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.321-329
    • /
    • 2019
  • Hair loss, also known as alopecia, is a common dermatological condition of psychosocial significance; development of therapeutic candidates for the treatment of this condition is, hence, important. Silibinin, a secondary metabolite from Silybum marianum, is an effective antioxidant that also prevents various cutaneous problems. In this study, we have investigated the effect of silibinin on hair induction using three-dimensional (3D) cultured, human dermal papilla (DP) spheroids. Silibinin was found to significantly increase viability through AKT serine/threonine kinase (AKT) activation in 3D DP spheroids. This was correlated with an increase in the diameter of the 3D DP spheroids. The activation of the wingless and INT-1 (Wnt)/${\beta}$-catenin signaling pathway, which is associated with hair growth induction in the DP, was evaluated using the T cell-specific transcription factor and lymphoid enhancer-binding factor (TCF/LEF) transcription factor reporter assay; results indicated significantly increased luciferase activity. In addition, we were able to demonstrate increased expression of the target genes, WNT5a and LEF1, using quantitative real-time PCR assay. Lastly, significantly elevated expression of signature genes associated with hair induction was demonstrated in the 3D DP spheroids treated with silibinin. These results suggest that silibinin promotes proliferation and hair induction through the AKT and Wnt/${\beta}$-catenin signaling pathways in 3D DP spheroids. Silibinin can be a potential candidate to promote hair proliferation.

Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway

  • Lee, Yun Hee;Choi, Hui-Ji;Kim, Ji Yea;Kim, Ji-Eun;Lee, Jee-Hyun;Cho, So-Hyun;Yun, Mi-Young;An, Sungkwan;Song, Gyu Yong;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.933-941
    • /
    • 2021
  • Ginsenoside Rg4 is a rare ginsenoside that is naturally found in ginseng, and exhibits a wide range of biological activities including antioxidant and anti-inflammatory properties in several cell types. The purpose of this study was to use an in vivo model of hair follicle (HF)-mimic based on a human dermal papilla (DP) spheroid system prepared by three-dimensional (3D) culture and to investigate the effect of Rg4 on the hair-inductive properties of DP cells. Treatment of the DP spheroids with Rg4 (20 to 50 ㎍/ml) significantly increased the viability and size of the DP spheres in a dose-dependent manner. Rg4 also increased the mRNA and protein expression of DP signature genes that are related to hair growth including ALP, BMP2, and VCAN in the DP spheres. Analysis of the signaling molecules and luciferase reporter assays further revealed that Rg4 induces the activation of phosphoinositide 3-kinase (PI3K)/AKT and the inhibitory phosphorylation of GSK3β, which activates the WNT/β-catenin signaling pathway. These results correlated with not only the increased nuclear translocation of β-catenin following the treatment of the DP spheres with Rg4 but also the significant elevation of mRNA expression of the downstream target genes of the WNT/β-catenin pathway including WNT5A, β-catenin, and LEF1. In conclusion, these results demonstrated that ginsenoside Rg4 promotes the hair-inductive properties of DP cells by activating the AKT/GSK3β/β-catenin signaling pathway in DP spheres, suggesting that Rg4 could be a potential natural therapy for hair growth.

Monoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the AKT/β-Catenin Signaling Pathway

  • Lee, Yu Rim;Bae, Seunghee;Kim, Ji Yea;Lee, Junwoo;Cho, Dae-Hyun;Kim, Hee-Sik;An, In-Sook;An, Sungkwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1830-1840
    • /
    • 2019
  • Loliolide is one of the most ubiquitous monoterpenoid compounds found in algae, and its potential therapeutic effect on various dermatological conditions via agent-induced biological functions, including anti-oxidative and anti-apoptotic properties, was demonstrated. Here, we investigated the effects of loliolide on hair growth in dermal papilla (DP) cells, the main components regulating hair growth and loss conditions. For this purpose, we used a three-dimensional (3D) DP spheroid model that mimics the in vivo hair follicle system. Biochemical assays showed that low doses of loliolide increased the viability and size of 3D DP spheroids in a dose-dependent manner. This result correlated with increases in expression levels of hair growth-related autocrine factors including VEGF, IGF-1, and KGF. Immunoblotting and luciferase-reporter assays further revealed that loliolide induced AKT phosphorylation, and this effect led to stabilization of β-catenin, which plays a crucial role in the hair-inductive properties of DP cells. Further experiments showed that loliolide increased the expression levels of the DP signature genes, ALP, BMP2, VCAN, and HEY1. Furthermore, conditioned media from loliolide-treated DP spheroids significantly enhanced proliferation and the expression of hair growth regulatory genes in keratinocytes. These results suggested that loliolide could function in the hair growth inductivity of DP cells via the AKT/β-catenin signaling pathway.

Phloroglucinol Enhances Anagen Signaling and Alleviates H2O2-Induced Oxidative Stress in Human Dermal Papilla Cells

  • Seokmuk Park;Ye Jin Lim;Hee Su Kim;Hee-Jae Shin;Ji-Seon Kim;Jae Nam Lee;Jae Ho Lee;Seunghee Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.812-827
    • /
    • 2024
  • Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of β-Catenin. Since several anagen-inductive genes are regulated by β-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated β-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3β) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3β/β-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated β-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.