• Title/Summary/Keyword: hair growth activity

Search Result 118, Processing Time 0.028 seconds

Allelopathic Effects of Catsear (Hypochaeris radicata L.) for the Development of Environmentally-friendly Agricultural Materials (친환경농자재 개발을 위한 서양금혼초(Hypochaeris radicata L.)의 알레로패시 효과)

  • Cha, Jin-Woo;Kim, Hyoun-Chol;Kang, Jeong-Hwan;Kim, Tae-Keun;Jung, Dae-Cheon;Song, Sang-Churl;Lee, Hee-Sean;Song, Jin-Young;Song, Chang-Khil
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.1
    • /
    • pp.129-145
    • /
    • 2014
  • To evaluate the potential of Hypochoeris radicata L. for the development of environment-friendly organic materials, its growth characteristics, allelopathic effects and antifungal activity was investigated. The growth characteristics of H. radicata L. was investigated by measuring comparative number of shoot and flower, and the diameters of clones in mowing areas and non-mowing areas, respectively. As a result, the number of shoot and flower, and diameters of clones of H. radicata L. grown in mowing areas were much higher than those grown in non-mowing areas. Water extracts of H. radicata L. inhibited seed germination, and shoot, root and root hair growth of 14 test plants including Trifolium pratense, Festuca myuros, Bidens bipinnata and finally reduced heir biomass remarkably. The inhibitory effect of the extract was different depending on the kind and the part of tested plants. The extracts showed high antifungal activity against Pythium spp. and Phytophthora However, it showed comparably less antifungal activity against Rhizoctonia solani than Pythium spp. and Phytophthora. In conclusion, cutting H. radicata L. resulted increase of its vegetative and seed propagation and helped it to form large colony. Also it had an effect on growth of microbes and germination and growth of other plants. Therefore H. radicata L. holds the competitive dominant position in plant ecosystem in Jeju Island and it can be used as candidate of environment-friendly organic materials.

Isolation and Characterization of Feather Keratin-Degrading Bacteria and Plant Growth-Promoting Activity of Feather Hydrolysate (우모 케라틴 분해세균의 분리, 특성 및 우모 분해산물의 식물 생육촉진 효과)

  • Jeong, Jin-Ha;Lee, Na-Ri;Kim, Jeong-Do;Jeon, Young-Dong;Park, Ki-Hyun;Oh, Dong-Joo;Lee, Chung-Yeol;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1307-1314
    • /
    • 2010
  • This study was conducted to isolate and characterize a novel feather-degrading bacterium producing keratinase activity. A strain K9 was isolated from soil at poultry farm and identified as Xanthomonas sp. K9 by phenotypic characters and 16S rRNA gene analysis. The cultural conditions for the keratinase production were 0.3% fructose, 0.1% gelatin, 0.04% $K_2HPO_4$, 0.06% $KH_2PO_4$, 0.05% NaCl and 0.01% $FeSO_4$ with an initial pH 8.0 at $30^{\circ}C$ and 200 rpm. In an optimized medium containing 0.1% chicken feather, production yield of keratinase was approximately 8-fold higher than the yield in basal medium. The strain K9 effectively degraded chicken feather meal (67%) and duck feather (54%), whereas human nail and human hair showed relatively low degradation rates (13-22%). Total free amino acid concentration in the cell-free supernatant was about 25.799 mg/l. Feather hydrolysate produced by the strain K9 stimulated growth of red pepper, indicating Xanthomonas sp. K9 could be not only used to increase the nutritional value of chicken feather but also a potential candidate for the development of natural fertilizer applicable to crop plant soil.

Caprine Dermatitis Caused by Trichophyton mentagrophytes (Trichophyton mentagrophytes에 의한 염소의 피부염)

  • Pal Mahendra;Sukumaran K.;Sejra Anand Ram;Lee Chang Woo
    • Journal of Veterinary Clinics
    • /
    • v.8 no.2
    • /
    • pp.147-152
    • /
    • 1991
  • Trichophyton mentagrophytes was described as a primary cause of mycotic dermatitis in two young goats housed together in a humid, ill-ventilated and unhygienic byre. The diagnosis in both the cases was established on the detection of fungal element in the skin scrapings by potassium hydroxide technique and isolation of the pathogen in pure growth on mycological medium at 30$^{\circ}C$. The lesions were found on the face of one kid and on the neck and ear of another one. Two adult goats housed in the same enclosure were found to be free from this disease. Further, there was no evidence of ringworm in the goat owner and his family members. Genetic crossing of both the isolates on modified sunflower seed medium indicated that they belonged to (―) mating type. Hair performation test revealed the keratolytic activity of both the strains of T. mentagrophytes. The public health significance and chemotherapy are also discussed. The question of source of infection could not be emphatically established.

  • PDF

Enzymatic characterization and Expression of 1-aminocycloprophane-1-carboxlyate deaminase from the rhizobacterium Pseudomonas flourescens

  • Lee, Gun-Woong;Ju, Jae-Eun;Kim, Hae-Min;Lee, Si-Nae;Chae, Jong-Chan;Lee, Yong-Hoon;Oh, Byung-Taek;Soh, Byoung-Yul
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.17-17
    • /
    • 2010
  • Ethylene, known as a stress hormone regulate wide developmental processes including germination, root hair initiation, root and shoot primordial formation and elongation, leaf and flower senescence and abscission, fruit ripening. The acceleration of ethylene biosynthesis in plant associated with environmental and biological stresses. 1-Aminocycloprophane-1-carboxlyate deaminase(ACCD) is an enzyme that cleaves ACC into and ammonia, a precursor of the plant hormone ethylene. Plant growth-promoting rhizobacteria (PGPR) having ACCD can decrease endogenous ACC level of tissue, resulting in reduced production of ethylene in plants. ACC deaminse was a key enzyme for protect stressed plants from injurious effects of ethylene. ACCD gene was encoded from Pseudomonas flourescens, PGPR and was cloned in Escherichia coli. We expressed the recombinant ACCD(rACCD) containing 357 amino acids with molecular weight 39 kDa that revealed by SDS-PAGE and western blot. The rACCD was purified by Ni-NTA purification system. The active form of rACCD having enzyme activity converted ACC to a-ketobutyrate. The optimal pH for ACC deaminase activity was pH 8.5, but no activity below pH 7.0 and a less severe tapering activity at base condition resulting in loss of activity at over pH 11. The optimal temperature of the enzyme was $30^{\circ}$ and a slightly less severe tapering activity at 15 - 30$^{\circ}$, but no activity over $35^{\circ}$. P. flourescens ACC deaminase has a highly conserved residue that plays in allowing substrate accessibility to the active sites. The enzymatic properties of this rACCD will provide an important reference for analysis of newly isolated ACCD and identification of newly isolated PGPR containing ACCD.

  • PDF

Effect of Phellius linteus water extract on benign prostatic hyperplasia

  • Kim, Yu-Na;Kim, Min-Sun;Chun, Sung-Sik;Choi, Jeong-Hwa
    • Nutrition Research and Practice
    • /
    • v.7 no.3
    • /
    • pp.172-177
    • /
    • 2013
  • Benign prostatic hyperplasia (BPH) is one of the most common diseases among elderly men. As the old-age population is increasing recently, it is to our interest to observe the growing BPH within them. In BPH, the dihydrotestosterone (DHT) acts as promotes prostate growth. It inhibits enzyme $5{\alpha}$-reductase that is involved in the conversion of testosterone to the DHT activity which reduces the excessive prostate growth. Through experiments, the effects of Phellius linteus water extract performed on the BPH rats were induced by testosterone treatments. For 12 weeks, Sprague-Dawley rats were treated with testosterone for the induction of BPH. Rats were divided into four experimental groups: the not treated group (N), the testosterone injection and D.W treatment group (TN), the testosterone injection and Phellinus linteus treatment group (TP) and testosterone injection and finasteride treatment group (TF). Prostate weight, volume and weight ratio in the TP group and the TF group were significantly lower than the TN group. Testosterone and DHT levels in the TN group were significantly higher than that of the N group. And the TP group was significantly decreased than that of the TN group. While prostates of control rats revealed severe acinar gland atrophy and stromal proliferation; the TP and TF groups showed trophic symptoms and were lined by flattened epithelial cells, thus, the stromal proliferation is relatively low as compared to the TN group. These suggest that Phellinus linteus water extracts may be an useful remedy for treating the benign prostatic hyperplasia.

The Danger-Associated Peptide PEP1 Directs Cellular Reprogramming in the Arabidopsis Root Vascular System

  • Dhar, Souvik;Kim, Hyoujin;Segonzac, Cecile;Lee, Ji-Young
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.830-842
    • /
    • 2021
  • When perceiving microbe-associated molecular patterns (MAMPs) or plant-derived damage-associated molecular patterns (DAMPs), plants alter their root growth and development by displaying a reduction in the root length and the formation of root hairs and lateral roots. The exogenous application of a MAMP peptide, flg22, was shown to affect root growth by suppressing meristem activity. In addition to MAMPs, the DAMP peptide PEP1 suppresses root growth while also promoting root hair formation. However, the question of whether and how these elicitor peptides affect the development of the vascular system in the root has not been explored. The cellular receptors of PEP1, PEPR1 and PEPR2 are highly expressed in the root vascular system, while the receptors of flg22 (FLS2) and elf18 (EFR) are not. Consistent with the expression patterns of PEP1 receptors, we found that exogenously applied PEP1 has a strong impact on the division of stele cells, leading to a reduction of these cells. We also observed the alteration in the number and organization of cells that differentiate into xylem vessels. These PEP1-mediated developmental changes appear to be linked to the blockage of symplastic connections triggered by PEP1. PEP1 dramatically disrupts the symplastic movement of free green fluorescence protein (GFP) from phloem sieve elements to neighboring cells in the root meristem, leading to the deposition of a high level of callose between cells. Taken together, our first survey of PEP1-mediated vascular tissue development provides new insights into the PEP1 function as a regulator of cellular reprogramming in the Arabidopsis root vascular system.

Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells

  • Choi, Youn Kyung;Kang, Jung-Il;Hyun, Jin Won;Koh, Young Sang;Kang, Ji-Hoon;Hyun, Chang-Gu;Yoon, Kyung-Sup;Lee, Kwang Sik;Lee, Chun Mong;Kim, Tae Yang;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.211-219
    • /
    • 2021
  • Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/β-catenin proteins, such as GSK3β (Ser9) and β-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/β-catenin pathway, attenuated the MA-induced increase in β-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/β-catenin and ERK pathways in DPCs.

Effect of Rhynchosia Nulubilis Ethanolic Extract on DOPA Oxidation and Melanin Synthesis (서목태 주정 추출물이 DOPA 산화와 멜라닌 합성에 미치는 영향)

  • Kim, JaeRyeon;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.331-338
    • /
    • 2018
  • Melanin is a polymer substance that plays an important role in the determination of hair growth and skin color in vivo. However, melanin, which is over-produced by reactive oxygen species, is known to cause stains, freckles, and hypercholesterolemia, which are associated with aging. Previous studies have shown that polyphosphate, one of the components of Rhynchosia Nulubilis, inhibits skin aging induced by ultraviolet rays. The aim of this study is to investigate the direct effect of Rhynchosia Nulubilis ethanolic extract (RNEE) on melanin synthesis. In this study, RNEE showed no antioxidative effects on scavenging activity of DPPH radical in addition to reducing power. The cytotoxicity of RNEE was increased in a dose-dependent manner in an MTT assay. In addition, RNEE increased tyrosinase activity and melanin synthesis in DOPA-oxidation experiments. RNEE did not promote the conversion L-DOPA into melanin in live cells, but melanin production was promoted in the RNEE-treated group after H2O2 pretreatment compared to the control group in which melanin production was reduced by treatment with H2O2. In addition, RNEE increased the expression level of tyrosinase related protein-2 (TRP-2) and increased the expression level of tyrosinase related protein-1 (TRP-1) at a concentration of $16{\mu}g/ml$. In particular, it was found that RNEE increased the expression level of SOD-3, by which superoxide anion is converted to hydrogen peroxide, higher than the control and ${\alpha}$-MSH used as a positive control at a concentration of more than $16{\mu}g/ml$. The results suggest that RNEE can induce melanogenesis related to black hair.

Inhibitory Effect of Artemisiae Annuae Herba Extracts on Melanin Synthesis, Tyrosinase Activities and Production Levels of Tyrosinase, MMP-1 and MMP-9 in SK-MEL-2 Cells (SK-MEL-2 세포에서 청호(靑蒿) 추출물의 Melanin 생성, Tyrosinase 활성과 생성, MMP-1 및 MMP-9 생성 억제 효과)

  • Lee, Eun-Kyu;Kim, Soo-Hyeon;Park, Kyung-Mi;Yang, Seung-Jeong;Cho, Seong-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.30 no.2
    • /
    • pp.37-48
    • /
    • 2017
  • Objectives: Artemisiae Annuae Herba is the dried aerial part of Artemisia annua L. (AAL). In Oriental medicine, Artemisiae Annuae Herba (AAH) is traditionally used to treat fever. AAH clears summerheat or damp-Heat, clears deficiency fevers, cools the blood and stops bleeding, stops malarial disorders and relieves heat, clears liver heat and brightens the eyes. Recently, there were many studies about effects of AAH on anti-oxidative, anti-inflammatory, anti-cancer, hair growth and plasma lipid composition. So, we expected AAH has an availability that can effect on skin whitening and elasticity. Methods: The present study was designed to investigate the effects of AAH on skin whitening and elasticity in SK-MEL-2 cells. In this experiment, the effects of AAH on proliferation rates, melanin synthesis, tyrosinase activities and production levels of tyrosinase, MMP-1 and MMP-9 in vitro were examined. Results: AAH did not affect viability of SK-MEL-2 cells and inhibited melanin synthesis induced by ${\alpha}$-Melanocyte-stimulating hormone (${\alpha}$-MSH) significantly. In addition, AAH also inhibited tyrosinase activity and lowered tyrosinase level in SK-MEL-2 cells. Finally, AAH inhibited productions of Matrix metalloproteinase-1 (MMP-1) and Matrix metalloproteinase-9 (MMP-9). Conclusions: These data suggest that AAH can be used to treat patients with skin diseases such as freckled face and also used as skin whitening agent.