• 제목/요약/키워드: habitat mapping

검색결과 46건 처리시간 0.024초

원격탐사를 활용한 베트남 Ben-tre 갯벌의 Meretrix lyrata 서식지 매핑 연구 (A Study on the Habitat Mapping of Meretrix lyrata Using Remote Sensing at Ben-tre Tidal Flat, Vietnam)

  • 황득재;우한준;구본주;최종국
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.975-987
    • /
    • 2021
  • 동남아시아 지역의 갯벌에 널리 서식하는 패류인 Meretrix lyrata의 집단폐사 현상의 원인과 해결책을 찾기 위한 일환으로 서식지 분포 확률도를 제작하였다. 서식지 분포 확률도는 GIS (Geographic Information System) 기법의 일종인 FR (Frequency Ratio) 기법을 활용하여 제작하였으며, 입력인자로는 Landsat 영상 기반의 DEM(Digital Elevation Model)과 경사도, WorldView-02 영상 기반의 조류로 밀도도 및 거리도, 표층퇴적상 분포도와 현장관측 자료를 활용하였다. 현장관측은 2014년 4월 베트남 Ben-tre 주의 Bihn Dai 지역의 갯벌에서 수행하였으며, 연구지역의 지형고도, 표층 저서생물상, 표층 퇴적상 자료를 수집하였다. 서식지 분포 확률도는 Mertrix lyrata 총 개체와 치패로 나누어 제작하였으며, 정확도는 각각 76.82%, 69.51%로 좋은 정확도를 보였다. 서식지 분포 확률도 분석 결과 Meretrix lyrata는 총 개체와 치패 모두의 경우에서 Sand가 우세한 지역에 서식하지만, 총 개체는 주로 고도가 -0.2~0.2 m 사이의 조간대 중-하부에 서식하며, 치패는 그보다 높은 0~0.3 m 사이의 지역에 서식하였다. 또한 총 개체의 서식지는 조류로로부터 영향을 받는 것으로 나타났지만, 치패는 조류로의 영향을 받지 않았다. 향후 국내 갯벌과의 비교 분석을 통해 서식지 분포 확률도의 정확도를 높이고, Meretrix lyrata를 비롯한 여러 대형저서동물의 서식환경에 대한 분석을 통해, 기후변화 등으로 인한 갯벌 생태의 변화에 대해 예측할 수 있을 것으로 기대된다.

한국의 갯벌 생태등급도 개발을 위한 생물학적 지시자의 검토와 제안 (Review and Proposition of Biological Indicators for a New Ecological Grading System of Tidal Flats in Korea)

  • 유재원;이창근;고병설;이시완;한동욱;최근형;김창수;홍재상
    • Ocean and Polar Research
    • /
    • 제33권1호
    • /
    • pp.85-97
    • /
    • 2011
  • The tidal flats of Korea today have reduced by 40% in size compared to 1964. To manage this important habitat properly, development of well-organized and nationwide-applicable grading systems is required. There have been several assessment systems proposed previously in Korea, but they are critically flawed in that selected biological indicators are not adequate and grading criteria are obscure and arbitrary. We reviewed the indicators used in these previous evaluation systems (e.g., diversity indices, quantity and quality of benthic macrofauna, halophytes, water birds, etc.) and subsequently proposed new indicators and an improved grading scheme. For the quantitative assessment of macrobenthic community, biomass reflecting production and ecosystem function is recommended over density, which is much less discriminatory among habitats. Of biodiversity indices used, within-, between-habitat and regional biodiversity indices that accurately reflect sampling efforts are suggested. In addition, we proposed to include species rarity, ecosystem engineers, and the ecological quality index ISEP (Inverse function of Shannon-Wiener Evenness Proportion). As for halophytes, their low spatial coverage on benthic habitat suggests that their presence can be used as an ecological indicator of benthic habitat, regardless of their protective status. We stress the need to introduce 1) quantile approach for quantitative indicators (e.g., diversity, biomass, etc.) in relation to grading, 2) presence-absence approach for spatial or aggregate indicators (e.g., boundaries of halophytes and feeding ground of water birds) and 3) benthic habitat mapping that combines all of these indicators.

Core Habitat Zonation for Selected Endangered Species using Remote Sensing and GIS

  • Khant, Aung Pyeh;Tripathi, Nitin K.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.15-17
    • /
    • 2003
  • One of the most serious problems that the world is facing is the loss of biodiversity and habitats as a result of environmental degradation. There are several strategies to protect the habitats and biodiversity within a certain region such as establishing protected areas; monitoring the remaining forests and managing the landscape within limits have been employed. In this study, Predicted Habitat Distribution Model (simple spatial modeling) was developed using vegetation types, land use and land cover, DEM, slope, drainage, roads, human settlement areas and minimum habitat requirements of each species. Then, based on the checklist of presence and absence of each species, the final habitat maps for selected endangered species are generated. Integration of Remote Sensing (RS) and Geographical Information System (GIS) has proven a very effective tool to generate wildlife habitat maps at various levels. An effecting mapping could be performed based on satellite remote sensing and modeling biodiversity indicators in GIS.

  • PDF

Habitat Suitability Modeling of Endangered Cyathea spinulosa (Wall. ex Hook.) in Central Nepal

  • Padam Bahadur Budha;Kumod Lekhak;Subin Kalu;Ichchha Thapa
    • Journal of Forest and Environmental Science
    • /
    • 제39권2호
    • /
    • pp.65-72
    • /
    • 2023
  • The endangered species of Cyathea spinulosa (tree ferns) are among the least concerned ferns of Nepal that bring threats to them and their habitat. A way to reduce such threats is by maintaining a database of species' whereabouts and generating a scientific understanding the habitat preferences. This will eventually help in the formulation of conservation plans for the species. This research aimed to characterize the suitable habitat of C. spinulosa by enumerating the location of species in the Panchase Forests of central Nepal. The statistical index method was applied to relate the occurrence locations of species with various environmental factors for the development of indices. The suitable habitat of C. spinulosa (more and most suitable categories) covered 119 km2 and accounted for 43% of the total area studied. 74.4% of occurrence locations of C. spinulosa were recorded from these habitats. The habitat characteristics suitable for C. spinulosa were: proximity to streams (high moisture), land covered by forested area (shady area), mid-elevations of hills about 1,000 m to 2,000 m (sub-tropical climate), slope gradient of 20° to 40° (steep slopes), and northern to eastern aspects. These habitat characteristics could be considered for in-situ protection of tree ferns and designating the conservation plots.

Mapping the Potential Distribution of Raccoon Dog Habitats: Spatial Statistics and Optimized Deep Learning Approaches

  • Liadira Kusuma Widya;Fatemah Rezaie;Saro Lee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제4권4호
    • /
    • pp.159-176
    • /
    • 2023
  • The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.

양서류 번식음 맵핑을 위한 무인비행장치 시스템의 정확성 검증 (Accuracy verification for unmanned aerial vehicle system for mapping of amphibians mating call)

  • 박민규;배서현
    • 한국환경복원기술학회지
    • /
    • 제25권2호
    • /
    • pp.85-92
    • /
    • 2022
  • The amphibian breeding habitat is confirmed by mating call. In some cases, the researcher directly identifies the amphibian individual, but in order to designate the habitat, it is necessary to map the mating call region of the amphibian population. Until now, it has been a popular methodology for researchers to hear mating calls and outline their breeding habitats. To improve this subjective methodology, we developed a technique for mapping mating call regions using Unmanned Aerial Vehicle (UAV). The technology uses a UAV, fitted with a sound recorder to record ground mating calls as it flies over an amphibian habitat. The core technology is to synchronize the recorded sound pressure with the flight log of the UAV and predict the sound pressure in a two-dimensional plane with probability density. For a demonstration study of this technology, artificial mating call was generated by a potable speaker on the ground and recorded by a UAV. Then, the recorded sound data was processed with an algorithm developed by us to map mating calls. As a result of the study, the correlation coefficient between the artificial mating call on the ground and the mating call map measured by the UAV was R=0.77. This correlation coefficient proves that our UAV recording system is sufficiently capable of detecting amphibian mating call regions.

Mapping Distribution of Dipterocarpus in East Kalimantan, Indonesia

  • Aoyagi, Kota;Tsuyuki, Satoshi;Phua, Mui-How;Teo, Stephen
    • Journal of Forest and Environmental Science
    • /
    • 제28권3호
    • /
    • pp.179-184
    • /
    • 2012
  • Dipterocarps (Dipterocarpaceae) is a dominant tree family of tropical rainforest in Southeast Asia. Dipterocarps have been exploited for its timber and disappearing fast in East Kalimantan. In this study, we predicted the distribution of dipterocarpus, one of the main dipterocarps genera, by evaluating its habitat suitability using logistic regression analysis with specimen collection points and environmental factors from GIS data. Current distribution of dipterocarpus was generated by combining the habitat suitability classes with an updated forest cover map. Rainfall, soil type, followed by elevation was the main factors that influence the distribution of dipterocarpus in East Kalimantan. Dipterocarpus can be found in a quarter of the current forest cover, which is highly suitable as habitat of Dipterocarpus.

Application of High-spatial-resolution Satellite Images to Monitoring Coral Reef Habitat Changes at Weno Island Chuuk, Micronesia

  • Choi, Jong-Kuk;Ryu, Joo-Hyung;Min, Jee-Eun
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.687-698
    • /
    • 2021
  • We present quantitative estimations of changes in the areal extent of coral reef habitats at Weno Island, Micronesia, using high-spatial-resolution remote sensing images and field observations. Coral reef habitat maps were generated from Kompsat-2 satellite images for September 2008 and September 2010, yielding classifications with 78.6% and 72.4% accuracy, respectively, which is a relatively high level of agreement. The difference between the number of pixels occupied by each seabed type was calculated, revealing that the areal extent of living corals decreased by 8.2 percentage points between 2008 and 2010. This result is consistent with a comparison of the seabed types determined by field observations. This study can be used as a basis for remediation planning to diminish the impact of changes in coral reefs.

Characteristics of Breeding Bird Communities in Mt. Namsan, Seoul, Korea

  • Rhim, Shin-Jae;Lee, Ju-Young;Kang, Jeong-Hoon
    • 한국산림과학회지
    • /
    • 제95권5호
    • /
    • pp.580-584
    • /
    • 2006
  • This study was conducted to clarify the characteristics of breeding bird communities between deciduous and coniferous forests from April to June 2005 in Mt. Namsan, Seoul, Korea. Two 10ha areas were selected for territory mapping of breeding bird communities. Number of breeding bird species, pairs,density and bird species diversity index were higher in deciduous forest with increasing amount of foliage in the forest profile or as forest structures developed compared with coniferous forest. The number of in coniferous forest. The differences in habitat structure between both study areas are very likely to have influenced how breeding birds used the available habitat. Forest structure and its interactions with birds should be consideration in forest management for birds and their habitat.

고해상도 위성영상을 이용한 산호초 서식환경 모니터링 : 축라군 웨노섬을 중심으로 (Coral Reef Habitat Monitoring Using High-spatial Satellite Imagery : A Case Study from Chuuk Lagoon in FSM)

  • 민지은;유주형;최종국;박흥식
    • Ocean and Polar Research
    • /
    • 제32권1호
    • /
    • pp.53-61
    • /
    • 2010
  • The distribution of coral reefs can be an indicator of environmental or anthropogenic impacts. Here, we present a habitat map of coral reefs developed using high-spatial satellite images. The study area was located on the north-eastern part of Weno island, in the Chuuk lagoon of Federated States of Micronesia. Two fieldwork expeditions were carried out between 2007 and 2008 to acquire optical and environmental data from 121 stations. We used an IKONOS image obtained in December 2000, and a Kompsat-2 image obtained in September 2008 for the purpose of coral reef mapping. We employed an adapted version of the object-based classification method for efficient classification of the high-spatial satellite images. The habitat map generated using Kompsat-2 was 72.22% accurate in terms of comparative analysis with in-situ measurements. The result of change detection analysis between 2000 and 2008 showed that coral reef distribution had decreased by 6.27% while seagrass meadows had increased by 8.0%.