• Title/Summary/Keyword: habitat environment

Search Result 1,376, Processing Time 0.03 seconds

Habitat Environment and Feeding Habitat of Iksookimia koreensis and Cobitis lutheri (Pisces: Cobitidae) in the Mangyeong River, Korea (만경강에 서식하는 참종개 Iksookimia koreensis와 점줄종개 Cobitis lutheri의 서식환경과 섭식생태)

  • Ko, Myeong-Hun;Park, Jong-Yeong;Kim, Su-Hwan
    • Korean Journal of Ichthyology
    • /
    • v.21 no.4
    • /
    • pp.253-261
    • /
    • 2009
  • Habitat environment and feeding habitat of Iksookimia koreensis and Cobitis lutheri were investigated in the Mangyeong River, Jeollabuk-do, Korea from 2005 to 2006. They together inhabit the upper and middle stream, but they showed differences in their microhabitat. I. koreensis inhabited the stony zones of relatively rapid waters with a water depth of 30~60 cm, whereas C. lutheri lived in the sandy zones of relatively slow waters with a depth of 30~100 cm. The two species were active during daylight hours from March to October but hibernated in the winter season. During hibernation I. koreensis still lived in the gravel and stone and C. lutheri burrowed in the sand. I. koreensis ingested mainly chironomid and other aquatic insects, whereas C. lutheri fed mainly on Chironomidae, Copepoda and Branchiopoda. The feeding rate of both species was highest in April and September, but they did not feed in the winter.

A Detection of Novel Habitats of Abies Koreana by Using Species Distribution Models(SDMs) and Its Application for Plant Conservation (종 분포 모형을 활용한 새로운 구상나무 서식지 탐색, 그리고 식물보전 활용)

  • Kim, Nam-Shin;Han, DongUk;Cha, Jin-Yeol;Park, Yong-Su;Cho, Hyeun-Je;Kwon, Hye-Jin;Cho, Yong-Chan;Oh, Seung-Hwan;Lee, Chang-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.135-149
    • /
    • 2015
  • Korean fir(Abies koreana E.H.Wilson 1920), endemic tree species of Korean peninsula, is considered as vulnerable and endangered species to recent rapid environmental changes such as land use and climate change. There are limited activities and efforts to find natural habitats of Korean fir for conservation of the species and habitats. In this study, by applying SDMs (Species Distribution Models) based on climate and topographic factors of Korean fir, we developed Korean fir's predicted distribution model and explored novel natural habitats. In Mt. Shinbulsan, Youngnam region and Mt. Songnisan, we could find korean fir's two novel habitat and the former was the warmest($13^{\circ}C$ in annual mean temperature), the driest(1,200mm~1,600mm in annual rainfall) and relatively low altitude environment among Korean fir's habitats in Korea. The result of SDMs did not include mountain areas of Gangwon-do as habitats of A. nephrolepis, because there were different contributions of key habitat environment factors, summer rainfall, winter mean temperature and winter rainfall, between A. koreana and A. nephrolepis. Our results raise modification of other distribution models on Korean fir. Novel habitat of Korean fir in Mt. Shinbulsan revealed similar habitat affinity of the species, ridgy and rocky site, with other habitats in Korea. Our results also suggest potential areas for creation of Korea fir's alternative habitats through species reintroduction in landscape and ecosystem level.

Valuation of Forest Habitat Functions of Endangered Mammals Using Species Distribution Model

  • Kim, Jung Teak;Kim, Jaeuk;Lee, Woo-Kyun;Jeon, Seong Woo;Kim, Joon Soon
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.3
    • /
    • pp.207-213
    • /
    • 2015
  • It is estimated that there is a total of approximately 100,000 species in Korea. However, the number is currently about 30,000 and only 16,027 species are listed in the 'Species Korea' (as of December, 2014). Of the listed species, 51 species are designated as the Endangered Species Class I while 195 species are in the Class II, totaling 246 endangered species including 20 mammals. Under the circumstances that development (e.g., roads) is increasingly threatening the persistence of endangered mammals, it is significant to identify and preserve suitable habitats for them. In this context, evaluating the values of the suitable habitat environment would serve as essential information for development decision making. This study estimated the values of endangered mammals' forest habitats through spatialization of habitat services. In doing so, a species distribution model, Maximum Entropy Model (MaxEnt) was utilized for a group of endangered mammals including, mountain goat, wildcat, marten cat, and flying squirrel. To calculate the values per unit area, a benefit transfer method was used based on the point-estimate technique with the best available values estimated previously. The range of discount rate of 3.0 to 5.5 percent was applied taking the notion of social discount rate into account. As a result, the province with the highest values for endangered mammal habitats appeared to be Gangwon, followed by Gyeongbuk and Gyeongnam. The monetary values of the endangered mammal habitats were estimated to be 330 billion to 421 billion won per year.

Estimation of Ecological Instream Flow Considering the River Characteristics and Fish Habitat in the Downstream of Yongdam Reservoir (용담댐 하류의 어류서식처를 고려한 생태학적 유지유량 산정)

  • Jang, Chang-Lae;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.374-381
    • /
    • 2009
  • Ecological instream flow was quantitatively calculated based on the river characteristics and fish habitat in the downstream of Yongdam Reservoir. The river bed and width did not change from 1988 before the am construction to 2004 after the dam construction, but the bed sediment size was attenuated a little in 2004. According to result that investigate fishes, 4 family 11 species including Acheilognathus koreensis were collected. Among them, Zacceo koreanus of cyprinidae was dominant, and Coreoleuciscus splendidus did sub-dominant. The habitat suitability indexes were estimated for two fish species Zacco koreanus and Coreoleuciscus splendidus using Physical Habitat Simulation System (PHABSIM) considering the river characteristics. In Gamdong and Daeti sites, the optimal ecological flow for Z. koreanus and C. splendidus were $13.90\sim12.60\;m^3\;s^{-1}$ and $15.50\sim11.60\;m^3\;s^{-1}$, respectively. In contrast, the optimal flow for the two species in Bunam site were $7.00\;m^3\;s^{-1}$. The ecological instream flow in the downstream of Yongdam Reservoir was between normal and high flow rate.

Growth Characteristics of Atractylodes japonica Koidz. in its Native Habitat (삽주의 자생지 환경과 생육 특성)

  • Park, Jeon-Min;Jang, Key-Hyun;Lee, Seong-Tae;Song, Gune-Woo;Kang, Jin-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.4
    • /
    • pp.327-333
    • /
    • 2000
  • This study was carried out to obtain the basic information for effective conservation and cultivation of Atractylodes japonica Koidz. The soil texture was sandy loam with low pH and high organic matter content compared to general cultivative land. Aerial part growth such as plant height, number of leaf, leaf length and leaf width was the highest in Tongyong indigenous species, but fresh rhizome weight was the highest in Pyongchang. Frequency of light penetration rate was high at $60{\sim}80%$ of full sun-light, but growth was better in high light penetration rate. The correlation between growth characteristics and habitat environment were investigated in 59 districts. Correation among growth characteristics in habitat, fresh rhizome weight was significant with plant height, number of leaf and stem diameter.

  • PDF

The process of capture and translocation during habitat restoration construction of Kaloula borealis - A Case Study of Samcheon Ecological River Restoration, Jeonju City - (맹꽁이 서식지 복원공사 중 포획 및 이주과정에 대한 연구 -전주시 삼천 생태하천 복원사업을 대상으로-)

  • Lim, Hyun-Jeong;Kim, Jong-Man;Jeong, Moon-Sun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.103-114
    • /
    • 2021
  • The purpose of this study is to provide basic data for habitat restoration by implementing a series of processes of capturing and translocating Kaloula borealis and managing them in artificial breeding facilities. The study site in Samcheon, Jeonju-si, Jeollabuk-do was a waste landfill site in the past, and Kaloula borealis was found during the Samcheon Ecological River Restoration Project around March 2018. To restore the habitat, a plan was established to capture, translocate, artificially breed, and release Kaloula borealis at the site. The capture methods of adult Kaloula borealis were pitfall trap and drift fence, direct capture, and deep barrels. During 2018-2019, 86 adults of Kaloula borealis were captured and translocated to artificial breeding facilities. VIE-tagging was inserted under the skin for monitoring. For artificial breeding, Gryllus bimaculatus with oyster powder and vegetables were regularly supplied to feed Kaloula borealis. At the end of October 2020, 150 young Kaloula borealis raised in artificial breeding facilities were found not entering hibernation, so they were managed in a separate artificial breeding facility. Some young and adult Kaloula borealis currently hibernating will be scheduled to be continuously managed in artificial breeding facilities and released to the restored habitat in the spring of 2021.

Estimation of River Ecological Flow in the Downstream Section of Seomjingang Dam (섬진강 댐 하류 구간에서의 하천 생태유량 산정)

  • Bae, Jeonga;Lee, Chanjoo;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.1-13
    • /
    • 2021
  • It is very important to secure sufficient river maintenance flow for the ecosystem, since the ecosystem in the downstream section of the dam is greatly affected by the stream maintenance flow from the dam. However, the amount of discharge from the Seomjingang Dam is decreasing year by year, this study estimated the ecological flow required for the downstream section of the Seomjingang Dam, which is known as the habitat of the endangered Acheilognathus somjinensis, in order to secure the river flow of the Seomjingang Dam. For this purpose, the proper discharge was calculated using the PHABSIM model, which is a hydrological survey and physical habitat simulation method, and the proper discharge of other fish species were also comprehensively reviewed. As a result of this study, the current river maintenance flow at the Seomjingang Dam partially satisfies the ecological maintenance flow including the Acheilognathus somjinensis in the downstream section of the Seomjingang Dam. However, this is recognized as the minimum discharge to maintain the ecology in the downstream section of the Seomjingang Dam, and it would be more desirable to secure larger river maintenance flow than this. This study can contribute the determination of the river maintenance flow of the Seomjingang Dam by proposing the river maintenance flow considering the fish habitat environment in the river.

Herpetofauna and habitat characteristics of 16 lagoons along the eastern coastline of South Korea

  • Lee, Jung-Hyun;Park, Dae-Sik;Lee, Heon-Joo;Kim, Ja-Kyeong;Ra, Nam-Yong
    • Journal of Ecology and Environment
    • /
    • v.33 no.3
    • /
    • pp.229-236
    • /
    • 2010
  • We conducted field surveys of amphibians and reptiles over a two-year period in 16 lagoons along the eastern coastline of South Korea, and determined the habitat characteristics correlated with the number of amphibian and reptilian species and individuals. We documented 11 amphibian species and 8 reptilian species. The dominant amphibian species was the black-spotted pond frog (Rana nigromaculata), and the dominant reptilian species was the red-eared turtle (Trachemys scripta elegans), an invasive species. Among the 14 habitat characteristics, connectivity to mountainous area significantly affected the number of amphibian and reptilian individuals. Other factors, including emerged plant cover, salinity, pH, the number of birds for amphibians and connectivity to agricultural land, lagoon perimeter length for reptiles also influenced the number of species or individuals of them. Our results demonstrate that these lagoons are home to more amphibians and reptiles than has been previously known. To effectively conserve herpetofauna in the lagoon ecosystem, lagoons as well as surrounding wetlands, grasslands, and mountainous areas should be protected.