• Title/Summary/Keyword: hGH

Search Result 199, Processing Time 0.022 seconds

Characterization of the Bacillus licheniformis WL-12 Mannanase from a Recombinant Escherichia coli (재조합 대장균으로부터 생산된 Bacillus licheniformis WL-12의 Mannanase 특성)

  • Yoon, Ki-Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.2
    • /
    • pp.71-76
    • /
    • 2010
  • A gene encoding the mannanase of Bacillus licheniformis WL-12, which had been isolated from Korean soybean paste, was cloned into Escherichia coli and nucleotide sequence of the mannanase gene was subsequently determined. The mannanase gene consisted of 1,080 nucleotides encoding a polypeptide of 360 amino acid residues. The deduced amino acid sequence was identical to that of putative mannanase from B. liceniformis DSM13 belonging to GH family 26. The mannanase was partially purified from cell-free extract of the recombinant Escherichia coli carrying a WL-12 mannanase gene by ammonium sulfate fractionation and DEAE-Sepharose column chromatography. Optimal conditions for the partially purified enzyme occurred at pH 6.0 and $65^{\circ}C$. The enzyme showed higher activity on locust bean gum (LBG) galactomannan and konjac glucomannan than on guar gum galactomannan. The predominant products resulting from the mannanase hydrolysis were mannose, mannobiose and mannotriose for LBG or mannooligosaccharides. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose.

Gene Cloning, Expression, and Characterization of a $\beta$-Agarase, AgaB34, from Agarivorans albus YKW-34

  • Fu, Xiao Ting;Pan, Cheol-Ho;Lin, Hong;Kim, Sang-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.257-264
    • /
    • 2009
  • A $\beta$-agarase gene, agaB34, was functionally cloned from the genomic DNA of a marine bacterium, Agarivorans albus YKW-34. The open reading frame of agaB34 consisted of 1,362 bp encoding 453 amino acids. The deduced amino acid sequence, consisting of a typical N-terminal signal peptide followed by a catalytic domain of glycoside hydrolase family 16 (GH-16) and a carbohydrate-binding module (CBM), showed 37-86% identity to those of agarases belonging to family GH-16. The recombinant enzyme (rAgaB34) with a molecular mass of 49 kDa was produced extracellularly using Escherichia coli $DH5{\alpha}$ as a host. The purified rAgaB34 was a $\beta$-agarase yielding neoagarotetraose (NA4) as the main product. It acted on neoagarohexaose to produce NA4 and neoagarobiose, but it could not further degrade NA4. The maximal activity of rAgaB34 was observed at $30^{\circ}C$ and pH 7.0. It was stable over pH 5.0-9.0 and at temperatures up to $50^{\circ}C$. Its specific activity and $k_{cat}/K_m$ value for agarose were 242 U/mg and $1.7{\times}10^6/sM$, respectively. The activity of rAgaB34 was not affected by metal ions commonly existing in seawater. It was resistant to chelating reagents (EDTA, EGTA), reducing reagents (DTT, $\beta$-mercaptoethanol), and denaturing reagents (SDS and urea). The E. coli cell harboring the pUC18-derived agarase expression vector was able to efficiently excrete agarase into the culture medium. Hence, this expression system might be used to express secretory proteins.

Biochemical Characterization of a Novel GH86 β-Agarase Producing Neoagarohexaose from Gayadomonas joobiniege G7

  • Lee, Yeong Rim;Jung, Subin;Chi, Won-Jae;Bae, Chang-Hwan;Jeong, Byeong-Chul;Hong, Soon-Kwang;Lee, Chang-Ro
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.284-292
    • /
    • 2018
  • A novel ${\beta}$-agarase, AgaJ5, was identified from an agar-degrading marine bacterium, Gayadomonas joobiniege G7. It belongs to the glycoside hydrolase family 86 and is composed of 805 amino acids with a 30-amino-acid signal peptide. Zymogram analysis showed that purified AgaJ5 has agarase activity. The optimum temperature and pH for AgaJ5 activity were determined to be $30^{\circ}C$ and 4.5, respectively. AgaJ5 was an acidic ${\beta}$-agarase that had strong activity at a narrow pH range of 4.5-5.5, and was a cold-adapted enzyme, retaining 40% of enzymatic activity at $10^{\circ}C$. AgaJ5 required monovalent ions such as $Na^+$ and $K^+$ for its maximum activity, but its activity was severely inhibited by several metal ions. The $K_m$ and $V_{max}$ of AgaJ5 for agarose were 8.9 mg/ml and 188.6 U/mg, respectively. Notably, thin-layer chromatography, mass spectrometry, and agarose-liquefication analyses revealed that AgaJ5 was an endo-type ${\beta}$-agarase producing neoagarohexaose as the final main product of agarose hydrolysis. Therefore, these results suggest that AgaJ5 from G. joobiniege G7 is a novel endo-type neoagarohexaose-producing ${\beta}$-agarase having specific biochemical features that may be useful for industrial applications.

Effects of Eucommiae Cortex on Osteoblast-like Cell Proliferation and Osteoclast Inhibition

  • Ha, Hyek-Yung;Ho, Jinn-Yung;Shin, Sun-Mi;Kim, Hye-Jin;Koo, Sung-Ja;Kim, In-Ho;Kim, Chung-Sook
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.929-936
    • /
    • 2003
  • Methanol extract (MeOH), n-hexane (Hx), chloroform ($CHCl_3$), ethyl acetate (EA), butanol (BuOH) and aqueous ($H_2O$) fractions of Eucommiae Cortex including geniposidic acid (GA), geniposide (GP) and aucubin (AU) were tested for their therapeutic efficacy on osteoporosis. The contents of GA, GP and AU in the cortex and leaf of Eucommia ulmoides Oliver were quantified by HPLC. The effect of Eucommiae Cortex on the induction of growth hormone (GH) release was studied by using rat pituitary cells. The proliferation of osteoblast-like cells increased by herbal extracts was assayed using a tetrazolium (MTT), alkaline phosphatase (ALP) activity, and [$^3H$]-proline incorporation assays. The inhibition of osteoclast was studied by using the coculture of mouse bone marrow cells and ST-2 cells. As a result, the GA, GP and AU were present in the cortex more than in the leaf of E. ulmoides Oliver. The MeOH (1mg/mL), Hx, $CHCl_3$ and EA fractions (each 20 $\mu$ g/mL) had potent induction of GH release. The $CHCl_3$ exhibited the potent proliferation of osteoblasts. The AU, GP and GA were increased proliferation of osteoblasts. In addition, GA ($IC_{50}: 4.43{\times}10^{-7}$M), AU and GP were significantly inhibited proliferation of osteoclast. In summary, it is thought that the components in a part of the fractions of Eucommiae Cortex participate in each step of mechanism for activating osteoblast to facilitate osteogenesis, and suppress osteoclast activity to inhibit osteolysis.

Characterization of a GH8 β-1,4-Glucanase from Bacillus subtilis B111 and Its Saccharification Potential for Agricultural Straws

  • Huang, Zhen;Ni, Guorong;Zhao, Xiaoyan;Wang, Fei;Qu, Mingren
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1446-1454
    • /
    • 2021
  • Herein, we cloned and expressed an endo-β-1,4-glucanase gene (celA1805) from Bacillus subtilis B111 in Escherichia coli. The recombinant celA1805 contains a glycosyl hydrolase (GH) family 8 domain and shared 76.8% identity with endo-1,4-β-glucanase from Bacillus sp. KSM-330. Results showed that the optimal pH and temperature of celA1805 were 6.0 and 50℃, respectively, and it was stable at pH 3-9 and temperature ≤50℃. Metal ions slightly affected enzyme activity, but chemical agents generally inhibited enzyme activity. Moreover, celA1805 showed a wide substrate specificity to CMC, barley β-glucan, lichenin, chitosan, PASC and avicel. The Km and Vmax values of celA1805 were 1.78 mg/ml and 50.09 µmol/min/mg. When incubated with cellooligosaccharides ranging from cellotriose to cellopentose, celA1805 mainly hydrolyzed cellotetrose (G4) and cellopentose (G5) to cellose (G2) and cellotriose (G3), but hardly hydrolyzed cellotriose. The concentrations of reducing sugars saccharified by celA1805 from wheat straw, rape straw, rice straw, peanut straw, and corn straw were increased by 0.21, 0.51, 0.26, 0.36, and 0.66 mg/ml, respectively. The results obtained in this study suggest potential applications of celA1805 in biomass saccharification.

Arabinoxylo- and Arabino-Oligosaccharides-Specific α-ʟ-Arabinofuranosidase GH51 Isozymes from the Amylolytic Yeast Saccharomycopsis fibuligera

  • Park, Tae Hyeon;Choi, Chang-Yun;Kim, Hyeon Jin;Song, Jeong-Rok;Park, Damee;Kang, Hyun Ah;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.272-279
    • /
    • 2021
  • Two genes encoding probable α-ʟ-arabinofuranosidase (E.C. 3.2.1.55) isozymes (ABFs) with 92.3% amino acid sequence identity, ABF51A and ABF51B, were found from chromosomes 3 and 5 of Saccharomycopsis fibuligera KJJ81, an amylolytic yeast isolated from Korean wheat-based nuruk, respectively. Each open reading frame consists of 1,551 nucleotides and encodes a protein of 517 amino acids with the molecular mass of approximately 59 kDa. These isozymes share approximately 49% amino acid sequence identity with eukaryotic ABFs from filamentous fungi. The corresponding genes were cloned, functionally expressed, and purified from Escherichia coli. SfABF51A and SfABF51B showed the highest activities on p-nitrophenyl arabinofuranoside at 40~45℃ and pH 7.0 in sodium phosphate buffer and at 50℃ and pH 6.0 in sodium acetate buffer, respectively. These exoacting enzymes belonging to the glycoside hydrolase (GH) family 51 could hydrolyze arabinoxylo-oligosaccharides (AXOS) and arabino-oligosaccharides (AOS) to produce only ʟ-arabinose, whereas they could hardly degrade any polymeric substrates including arabinans and arabinoxylans. The detailed product analyses revealed that both SfABF51 isozymes can catalyze the versatile hydrolysis of α-(1,2)- and α-(1,3)-ʟ-arabinofuranosidic linkages of AXOS, and α-(1,2)-, α-(1,3)-, and α-(1,5)-linkages of linear and branched AOS. On the contrary, they have much lower activity against the α-(1,2)- and α-(1,3)-double-substituted substrates than the single-substituted ones. These hydrolases could potentially play important roles in the degradation and utilization of hemicellulosic biomass by S. fibuligera.

Highly Efficient Biotransformation of Notoginsenoside R1 into Ginsenoside Rg1 by Dictyoglomus thermophilum β-xylosidase Xln-DT

  • Li, Qi;Wang, Lei;Fang, Xianying;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.447-457
    • /
    • 2022
  • Notoginsenoside R1 and ginsenoside Rg1 are the main active ingredients of Panax notoginseng, exhibiting anti-fatigue, anti-tumor, anti-inflammatory, and other activities. In a previous study, a GH39 β-xylosidase Xln-DT was responsible for the bioconversion of saponin, a natural active substance with a xylose group, with high selectivity for cleaving the outer xylose moiety of notoginsenoside R1 at the C-6 position, producing ginsenoside Rg1 with potent anti-fatigue activity. The optimal bioconversion temperature, pH, and enzyme dosage were obtained by optimizing the transformation conditions. Under optimal conditions (pH 6.0, 75℃, enzyme dosage 1.0 U/ml), 1.0 g/l of notoginsenoside R1 was converted into 0.86 g/l of ginsenoside Rg1 within 30 min, with a molar conversion rate of approximately 100%. Furthermore, the in vivo anti-fatigue activity of notoginsenoside R1 and ginsenoside Rg1 were compared using a suitable rat model. Compared with the control group, the forced swimming time to exhaustion was prolonged in mice by 17.3% in the Rg1 high group (20 mg/kg·d). Additionally, the levels of hepatic glycogen (69.9-83.3% increase) and muscle glycogen (36.9-93.6% increase) were increased. In the Rg1 group, hemoglobin levels were also distinctly increased by treatment concentrations. Our findings indicate that treatment with ginsenoside Rg1 enhances the anti-fatigue effects. In this study, we reveal a GH39 β-xylosidase displaying excellent hydrolytic activity to produce ginsenoside Rg1 in the pharmaceutical and food industries.

Mammary Gland-Specific Expression of Biologically Active Human Osteoprotegerin in Transgenic Mice

  • Sung, Yoon-Young;Lee, Chul-Sang
    • Development and Reproduction
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Osteoprotegerin (OPG) is a secreted glycoprotein that regulates bone resorption by inhibiting differentiation and activation of osteoclast, thereby potentially useful for the treatment of many bone diseases associated with increased bone loss. In this study, we designed a novel cDNA expression cassette by modifying the potent and mammary gland-specific goat ${\beta}$-casein/hGH hybrid gene construct and examined human OPG (hOPG) cDNA expression in transgenic mice. Six transgenic mice all successfully expressed hOPG in their milk at the level of 0.06-2,000 ${\mu}g/ml$. An estimated molecular weight of the milk hOPG was 55 kDa in SDS-PAGE, which is the same as a naturally glycosylated monomer. This hOPG expression was highly specific to the mammary glands of transgenic mice. hOPG mRNA was not detected in any organs analyzed except mammary gland. Functional integrity of milk hOPG was evaluated by TRAP (tartrate-resistant acid phosphatase) activity assay in bone marrow cell cultures. OPG ligand (OPG-L) treatment increased TRAP activity by two fold but it was completely abolished by co-treatment with transgenic milk containing hOPG. Taken together, our novel cDNA expression cassette could direct an efficient expression of biologically active hOPG, a potential candidate pharmaceutical for bone diseases, only in the mammary gland of transgenic mice.

Characterization of Cellulase and Xylanase from Bacillus subtilis NC1 Isolated from Environmental Soil and Determination of Its Genes (Bacillus subtilis NC1 유래 cellulase와 xylanase의 특성 규명 및 효소 유전자의 규명)

  • Park, Chang-Su;Kang, Dae-Ook;Choi, Nack-Shick
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.912-919
    • /
    • 2012
  • A Bacillus sp. strain producing celluase and xylanase was isolated from environmental soil with LB agar plate containing carboxymethylcellulose (CM-cellulose) and beechwood xylan stained with trypan blue as substrates, respectively. Based on the 16S rRNA gene sequence and API 50 CHL test, the strain was identified as B. subtilis and named B. subtilis NC1. The cellulase and xylanase from B. subtilis NC1 exhibited the highest activities for CM-cellulose and beechwood xylan as substrate, respectively, and both enzymes showed the maximum activity at pH 5.0 and $50^{\circ}C$. We cloned and sequenced the genes for cellulase and xylanase from genomic DNA of the B. subtilis NC1 by the shot-gun cloning method. The cloned cellulase and xylanase genes consisted of a 1,500 bp open reading frame (ORF) encoding a 499 amino acid protein with a calculated molecular mass of 55,251 Da and a 1,269 bp ORF encoding a 422 amino acid protein with a calculated molecular mass of 47,423 Da, respectively. The deduced amino acid sequences from the genes of cellulase and xylanase showed high identity with glycosyl hydrolases family (GH) 5 and 30, respectively.

Studies on the Efficient Improvement of Measurement Methods of Stand Volume (임분재적(林分材積) 측정법(測定法)의 효율적(效率的) 개선방안(改善方案)에 관(關)한 연구(研究))

  • Lee, Jong Lak;Yun, Jong Hwa;Lee, Heung Kyun;Kim, Chang Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.3
    • /
    • pp.181-192
    • /
    • 1987
  • The purpose of this study is to develop the method of stand volume estimation by the plotless sampling method. The required data were obtained from 164 sampling plots in the red pine(Pinus densiflora) stands which were located in Kyeong-gi, Chung-nam, Chung-buk and Kang-won areas, and related factors were measured actually. The method of stand volume estimation and several tables were drivel from these data. 1. The relationship between the values of stand average height, basal area per ha, and basal area height obtained from the plotless sampling method and values measured actually could be described by the equation Y=bx, where b approached nearly 1.0 and there were no significant differences between them. Therefore stand volumes could be estimated by the plotless sampling method. 2. The estimated equations of the stand voulumes, which were estimated using factors to be measured by dendrometer, are as follows ; logV=-0.0208+0.8497 logGH, logV=-0.0028+0.7981 logG+0.9313 logH. Stand volume tables by these estimated equations were shown in table 4, 5 and estimation error percentages were 9.16% and 8.50% respectively. FH=D/(1.5205+0.0994D) logFH=0.0451+0.2429 logD+0.3474 logH logFG=-0.0380+0.7758logG-0.0066logH F=H/ (-5.1697+2.6013H) F=FH/(-3.1256+2.7611FH) logF=-0.0634-0.0848 logGH-0.1224 logDi 4. Stand form height tables(table7, 8), form basal area tables(table 9), and stand form factor tables(table 10, 11) were prepared using the above estimated equations, and the estimation error percentages were less than 10%.

  • PDF