• Title/Summary/Keyword: h2 Separation

Search Result 1,278, Processing Time 0.03 seconds

Chemical Constituents of Domestic Quercus spp. Barks (국내산 참나무속 수종 수피의 추출성분)

  • Kim, Jin-Kyu;Kwon, Dong-Joo;Lim, Soon-Sung;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.359-374
    • /
    • 2010
  • This study was carried out to investigate the chemotaxonomical correlation and chemical constituents of domestic Quercus spp. barks. The barks of Q. mongolica, Q. aliena, Q. serrata, Q. acutissima, Q. dentata, and Q. variabilis were collected in the experimental forest of Kangwon National University. The combined extracts were successively fractionated with n-hexane, methylene chloride and ethyl acetate using a separation funnel. A portion of the ethyl acetate and H2O soluble materials of each species were chromatographed on a Sephadex LH-20 column using various aqueous MeOH and EtOH-hexane as washing solvents. Spectrometric analysis such as NMR and MS, including TLC, were performed to characterize the structures of the isolated compounds. Ellagic acid (0.03 g), (+)-catechin (4.59 g), taxifolin (3.35 g), and glucodistylin (20.52 g) were isolated from Q. mongolica bark. Gallic acid (0.18 g), (+)-catechin (8.52 g), (+)-gallocatechin (0.09 g), taxifolin (0.54 g), and glucodistylin (3.28 g) were characterized from Q. acutissima bark. Gallic acid (0.38 g), ellagic acid (0.11 g), (+)-catechin (2.01 g), (+)-gallocatechin (0.12 g), and glucodistylin (0.39 g) were identified from Q. dentata bark. Ellagic acid (1.51 g), (+)-catechin (21.91 g), and glucodistylin (3.91 g) were purified from Q. aliena bark. Ellagic acid (0.84 g), (+)-catechin (0.82 g), taxifolin (4.02 g), and glucodistylin (21.50) were isolated from Q. serrata bark. Gallic acid (0.24 g), caffeic acid (0.05 g), (+)-catechin (0.32 g), and glucodistylin (0.65 g) were purified from Q. variabilis bark. (+)-Catechin and glucodistylin were isolated from all the barks. Glucodistylin can be a taxonomic index on Quercus spp.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

Utrastructural Analysis of the Delignification Behaviour in P-Cresol-Water Solvent Pulping (크레졸-물 용매펄프화의 탈리그닌에 관한 초미세구조적 분석)

  • Kim, Chang-Keun;Jo, Byoung-Muk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.60-71
    • /
    • 1992
  • To investigate the delignification behaviour in solvolysis pulping process, Populus alba ${\times}$ glandulosa H. and Pinus Kuraiensis S. et Z. were cooked with p-cresol and vater solvent(2:8, 5:5, 8:2 v/v) at $175^{\circ}C$ for 9 cooking time levels(20, 40, 60, 80, 100, 120, 140, 160, 180, min). Pulp yield, residual lignin content, de lignification rate, decarborhydration rate were determined. Delignification behaviours were analyzed by TEM. 1. The p-cresol-water solvent cooking of P. alba ${\times}$ glandulosa showed good delignification at the solvent system which the mixture ratio of p-cresol and water were 2:8(v/v), while the cooking of P. koraiensis with the p-cresol and water mixture ratio of 5:5 was no good. 2. P. alba ${\times}$ glandulosa showed three step-delignification phenomena at the solvent system which the mixture ratio of p-cresol and water were 2:8(v/v) anti 5:5(v/v). But P. koraiensis showed a first order delignification reaction at the same mixture ratio of p-cresol and water solvent system. 3. In TEM micrograph obtained for the solvent system which the mixture ratio of p-cresol and water was 5:5(v/v), the partial delignification of the cell corner of P. alba ${\times}$ glandulosa and P. koraiensis were observed at 60min. of cooking time. Complete delignification at the cell corner of P. alba ${\times}$ glandulosa was observed at 160min. and that of P. koraiensis was observed of 180min. of cooking time. 4. In optical microscopic observation, fiber separation of P. alba ${\times}$ glandulosa occured at 120min. and that of P. koraiensis began at 140min. of cooking time. 5. At the solvent system which the mixture ratio of p-cresol and water was 5:5(v/v), middle layer on secondary wall($S_2$) and cell corner of P. alba ${\times}$ glandulosa were more selectively delignified than primary wall(P) and outer layer on secondary wall($S_1$). However P. koraiensis did not showed any difference in delignification between cell wall layers and cell corner.

  • PDF

Fundamental Study on a Distillation Separation of a LiCl-KCl Eutectic Salt from Rare Earth Precipitates (희토류 침전물로부터 LiCl-KCl 공융염의 증류 분리에 관한 기초연구)

  • Yang, Hee-Chul;Eun, Hee-Chul;Kim, In-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • The distillation rate on LiCl-KCl eutectic salt under different vacuums from 0.5-50 mmHg was first investigated by using both a non-isothermal and a isothermal thermogravimetric (TG) analysis. Based on the non-isothermal TG data, distillation rate equations as a function of the temperature could be derived. Calculated flux by these model flux equations was in agreement with the distillation rate obtained from isothermal TG analysis. A distillation rate of $10^{-4}-10^{-5}$ mole $cm^{-2}sec^{-1}$ is obtainable at temperatures less than 1300K and vacuums of 0.5-50 mmHg. About a 99% salt distillation efficiency was obtained after an hour at a temperature above 1150 K under 50 mmHg in a small scale distillation test system. An increase in the vaporizing surface area is relatively effective for removing residual salt in the remaining particles, when compared to that for the vaporizing time. Over 99.95% of total distillation efficiency was obtained for a 1-h distillation operation by increasing the inner surface area from $4.52cm^2$ to $12.56cm^2$.

Preparation of Nickel Hexacyanoferrate Ion Exchanger for Electrochemical Separation of Cations (양이온의 전기화학적 분리를 위한 페리시안니켈 이온교환체의 제조에 관한 연구)

  • Lee, Ji Hyun;Hwang, Young Gi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • Although chemical sedimentation and ion exchange are usually applied to the treatment of heavy metal ions and radioactive cations, they have some serious disadvantages like a great consumption of chemicals, the disposal of valuable metals, and the secondary pollution of soil by the solid-waste. The advanced countries recently have studied the electrochemical ion exchange, combined electrochemical reduction and ion exchange, for the development of the alternative technique. This study has been performed to investigate the optimum condition for the preparation of the nickel hexacyanoferrate (NiHCNFe) which is an electrochemical ion exchanger. NiHCNFe film was deposited on the surface of nickel plate by chemical method or electrochemical method. The morphology and composition of NiHCNFe were observed by SEM and EDS, respectively. The peak current density of NiHCNFe was measured from the cyclic voltammograms of the continuous oxidation-reduction reaction in a parallel plane ion exchange electrode reactor. It was found that the chemical preparation method was better than the electrochemical method. The concentrated NiHCNFe was apparently deposited on nickel plate when dipping in the preparing solution for 118 h, especially. It also had a best durable performance as an ion exchange electrode.

Double Frequency Forcing of the Laminar Separated Flow over a Backward-Facing Step (층류박리 후향계단 유동의 이중주파수 가진)

  • Kim, Sung-Wook;Choi, Hae-Cheon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1023-1032
    • /
    • 2003
  • The effect of local forcing on the separated flow over a backward-facing step is investigated through hot-wire measurements and flow visualization with multi-smoke wires. The boundary layer upstream of the separation point is laminar and the Reynolds number based on the free stream velocity and the step height is 13800. The local forcing is given from a slit located at the step edge and the forcing signal is always defined when the wind tunnel is in operation. In case of single frequency forcing, the streamwise velocity and the reattachment length are measured under forcing with various forcing frequencies. For the range of 0.010〈S $t_{\theta}$〈0.013, the forcing frequency component of the streamwise velocity fluctuation grows exponentially and is saturated at x/h = 0.75 , while its subharmonic component grows following the fundamental and is saturated at x/h = 2.0. However, the saturated value of the subharmonic is much lower than that of the fundamental. It is observed that the vortex formation is inhibited by the forcing at S $t_{\theta}$ = 0.019 . For double frequency forcing, natural instability frequency is adopted as a fundamental frequency and its subharmonic is superposed on it. The fundamental frequency component of the streamwise velocity grows exponentially and is saturated at 0.5 < x/h < 0.75, while its subharmonic component grows following the fundamental and is saturated at x/h= 1.5 . Furthermore, the saturated value of the subharmonic component is much higher than that for the single frequency forcing and is nearly the same or higher than that of the fundamental. It is observed that the subharmonic component does not grow for the narrow range of the initial phase difference. This means that there is a range of the initial phase difference where the vortex parring cannot be enhanced or amplified by double frequency forcing. In addition, this effect of the initial phase difference on the development of the shear layer and the distribution of the reattachment length shows a similar trend. From these observations, it can be inferred that the development of the shear layer and the reattachment length are closely related to the vortex paring.

Processing Characteristics of the Condensed Wastewater Resulting from Food Waste Disposal using a Submerged Polyethylene Hollow Fiber Membrane (음식물 소멸기에서 발생하는 응축폐수의 Polyethylene 침지형 중공사막을 이용한 처리 특성)

  • Ryu, Jae-Sang;Jeon, Tae-Bong;Kim, Jin-Ho;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • This study is conducted about the system that reduces organism after fermenting food waste from a food waste disposal equipment, divides gas made when food waste is fermented into gas and water, and then sends gas to a reactor again, condenses water, and apply it to the MBR system with submerged MF hollow fiber membranes. A submerged MF hollow fiber membrane module was installed to a food waste disposal equipment and a water treatment system made by Bio Hitech Co,. Ltd. to process food waste generated from a staff cafeteria in a H institute for 90 days. For initial seeding of a food waste disposal equipment, 305 kg of rice bran, chaff, and sawdust as well as 1,648 kg of food were input during the operation, and 1,600 L of condensed wastewater occurred. Fermented by-product after finishing running a food waste disposal equipment was 386 kg and its reduction was shown to be 80%. The organism was processed by applying submerged MF hollow fiber membrane module to the MBR system of condensed wastewater, and the result shows reduction rates were BOD 99.9%, COD 97.5%, SS 98.6%, T-N 54.6% and T-P 34.7% and the total colon bacillus was perfectly eliminated.

Effect of Turbid Water on Fishes in the Streams of Imha Reservoir (임하호 유입지천에 서식하는 어류에 미치는 탁수의 영향)

  • Yu, Sam-Hwan;Kim, Jeong-Sook;Shin, Myung-Ja;Lee, Jong-Eun;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1410-1416
    • /
    • 2009
  • The present study aims to examine the effect of turbid water on fishes in streams which branch into a turbid water area (Yeongyang-gun) and a non-turbid water area (Cheongsong-gun), and finally flow into the Imha reservoir. In a comparison of water quality, the chemical status of the water showed higher pH, DO and SS in the turbid water area than in the non-turbid water area. Also, high density of clay minerals such as vermiculite (V) and illite (I), which is from clay mineral leakage during rainfall, was detected in turbid water, resulting in an increase of turbidity. Fishes inhabiting the turbid water showed irregular spaces in gill lamella, cell separation, edema, and clubbing in epithelial tissues. Also, the gill surface showed roughness and plenty of muddy debris substances inside the gills. The Bowman's space was expanded because of contraction of the glomerulus in the Bowman's space of the kidney tissues. Antioxidant enzymes such as SOD, CAT, GPX, and GST showed higher activities in the specific tissues, muscles and kidney, of fishes living in turbid water than in the non-turbid area. We suggested that; first, the antioxidant activities were increased due to removal of harmful radicals generated in fish bodies in the turbid water area, second, long-time exposure of these histological changes in the tissues might have induced secondary lesion accompanying the inaccurate physiological constancy of fishes.

Linkage Disequilibrium Estimation of Chinese Beef Simmental Cattle Using High-density SNP Panels

  • Zhu, M.;Zhu, B.;Wang, Y.H.;Wu, Y.;Xu, L.;Guo, L.P.;Yuan, Z.R.;Zhang, L.P.;Gao, X.;Gao, H.J.;Xu, S.Z.;Li, J.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.772-779
    • /
    • 2013
  • Linkage disequilibrium (LD) plays an important role in genomic selection and mapping quantitative trait loci (QTL). In this study, the pattern of LD and effective population size ($N_e$) were investigated in Chinese beef Simmental cattle. A total of 640 bulls were genotyped with IlluminaBovinSNP50BeadChip and IlluminaBovinHDBeadChip. We estimated LD for each autosomal chromosome at the distance between two random SNPs of <0 to 25 kb, 25 to 50 kb, 50 to 100 kb, 100 to 500 kb, 0.5 to 1 Mb, 1 to 5 Mb and 5 to 10 Mb. The mean values of $r^2$ were 0.30, 0.16 and 0.08, when the separation between SNPs ranged from 0 to 25 kb to 50 to 100 kb and then to 0.5 to 1 Mb, respectively. The LD estimates decreased as the distance increased in SNP pairs, and increased with the increase of minor allelic frequency (MAF) and with the decrease of sample sizes. Estimates of effective population size for Chinese beef Simmental cattle decreased in the past generations and $N_e$ was 73 at five generations ago.

Correlation between Changes in Microbial/Physicochemical Properties and Persistence of Human Norovirus during Cabbage Kimchi Fermentation

  • Lee, Hee-Min;Lee, Ji-Hyun;Kim, Sung Hyun;Yoon, So-Ra;Lee, Jae Yong;Ha, Ji-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2019-2027
    • /
    • 2017
  • Recently, cabbage kimchi has occasionally been associated with the foodborne diseases of enteric viruses such as human norovirus (HuNoV). This study aimed to evaluate the correlation between microbial/physicochemical properties and persistence of HuNoV in experimentally contaminated cabbage kimchi fermented and stored at $4^{\circ}C$ or $10^{\circ}C$ for 28 days. Changes in organic acid content, lactic acid bacteria (LAB), acidity, pH, and salinity were analyzed. The recovery of structurally intact HuNoV was examined for up to 28 days post-inoculation, using a NoV GII.4 monoclonal antibody-conjugated immuno-magnetic separation method combined with quantitative real-time reverse transcription polymerase chain reaction. On day 0, LAB loads were $4.70log_{10}$ colony forming units/g and HuNoV GII.4 titers were $2.57log_{10}\;genomic\;copies/{\mu}l$, at both temperatures. After 28 days, intact HuNoV titers decreased to 1.58 ($4^{\circ}C$) and $1.04(10^{\circ}C)log_{10}\;genomic\;copies/{\mu}l$, whereas the LAB density increased. This correlated with a gradual increase in lactic acid and acetic acid at both temperatures. Our findings support a statistical correlation between changes in physicochemical properties and the recovery of structurally intact HuNoV GII.4. Moreover, we determined that the production of organic acid and low pH could affect HuNoV GII.4 titers in cabbage kimchi during fermentation. However, HuNoV GII.4 was not completely eliminated by microbial/physicochemical factors during fermentation, although HuNoV GII.4 was reduced. Based on this, we speculate that the persistence of HuNoV GII.4 may be affected by the continually changing conditions during kimchi fermentation.