• Title/Summary/Keyword: h-p-k refinement

Search Result 29, Processing Time 0.027 seconds

The Structure Determination of La2/3-xLi3x1/3-2xTiO3 by the Powder Neutron and X-ray Diffraction

  • Kang, Eun-Tae;Kwon, Young-Jean
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.513-518
    • /
    • 2003
  • La/sub 2/3-x/Li/sub 3x/□/sub 1/3-2x/TiO₃ compounds with x=0.13 and 0.12 were prepared by slow cooling (x=0.13) and rapid quenching (x=0.12) into the liquid nitrogen after sintering at 1350℃ for 6 h. Their crystal structure has been determined by Rietveld refinement of both the powder neutron and X-ray diffraction data. From neutron diffraction data, we found that the main phase was not tetragonal (P4/mmm), but trigonal (R3cH). The refinement of neutron diffraction for the slow cooled samples were in a good agreement with a new model; a mixture of trigonal (R3cH, 45.7 wt%), tetragonal (p4/mmm, 37.0 wt%), and Li/sub 0.57/Ti/sub 0.86/O₂(pbnm, 17.2 wt%), but the quenched sample was found not to contain tetragonal (p4/mmm). X-ray diffraction data couldn't be well fitted because of the Poor scattering factor of lithium ions and the similar reflection patterns among trigonal (R3cH), tetragonal (p4/mmm), and cubic (Pm3m). We also knew that one transport bottlenecks is destroyed by one La vacancy in the case of trigonal (R3cH).

Mesh Refinement for Isogeometric Analysis and Post-Processing (등기하 해석을 위한 요소망 정제와 후처리 방법)

  • Kim, Jee-In;Luu, Tuan Anh;Lee, Jae-Hong;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2012
  • This paper derives Isogeometric analysis and post-processing method of surface that are generated by NURBS basis function for accurate geometric modeling and structure analysis of free-form. By deforming these parameters that are consisted of control points, knots, polynomial, variable geometric models are derived. The basis function that is used to Isogeometric analysis is same to the basis function of NURBS that is used to generate geometric models. For performing isogeometric analysis, h-p-k refinement is performed without changing of original geometry. To visualize the results of isogeometric analysis that control points' displacements, post-processing method that is the interface method between IGES format and Rhinoceros is derived.

Recovery of Tungsten from WC/Co Hardmetal Sludge by Alkaline Leaching Hydrometallurgy Process (WC/Co 초경합금 가공 슬러지로부터 알칼리침출 정련공정에 의한 W 회수)

  • Lee, Gil-Geun;Kwon, Ji-Eun
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.372-378
    • /
    • 2016
  • This study focuses on the development of an alkaline leaching hydrometallurgy process for the recovery of tungsten from WC/Co hardmetal sludge, and an examination of the effect of the process parameters on tungsten recovery. The alkaline leaching hydrometallurgy process has four stages, i.e., oxidation of the sludge, leaching of tungsten by NaOH, refinement of the leaching solution, and precipitation of tungsten. The WC/Co hardmetal sludge oxide consists of $WO_3$ and $CoWO_4$. The leaching of tungsten is most affected by the leaching temperature, followed by the NaOH concentration and the leaching time. About 99% of tungsten in the WC/Co hardmetal sludge is leached at temperatures above $90^{\circ}C$ and a NaOH concentration above 15%. For refinement of the leaching solution, pH control of the solution using HCl is more effective than the addition of $Na_2S{\cdot}9H_2O$. The tungsten is precipitated as high-purity $H_2WO_4{\cdot}H_2O$ by pH control using HCl. With decreasing pH of the solution, the tungsten recovery rate increases and then decrease. About 93% of tungsten in the WC/Co hardmetal sludge is recovered by the alkaline leaching hydrometallurgy process.

Static Analysis of Timoshenko Beams using Isogeometric Approach

  • Lee, Sang Jin;Park, Kyoung Sub
    • Architectural research
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2014
  • A study on the static analysis of Timoshenko beams is presented. A beam element is developed by using isogeometric approach based on Timoshenko beam theory which allows the transverse shear deformation. The identification of transverse shear locking is conducted by three refinement schemes such as h-, p- and k-refinement and compared to other reference solutions. From numerical examples, the present beam element does not produce any shear locking in very thin beam situations even with full Gauss integration rule. Finally, the benchmark tests described in this study is provided as future reference solutions for Timoshenko beam problems based on isogeometric approach.

Stress Concentration Analysis of Grain Refinement in Rheology Casting Process

  • Z., Yang;P. K., Seo;J.H., Ko;Y. S., Jung;C. G., Kang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.668-671
    • /
    • 2004
  • The mechanics of the dendrite fragmentation is a very important aspect of grain refinement in rheocasting. In this work, the stress field of the dendrite stirred in the semisolid slurry was simulated by Metlab 6.0 software. The result shows that stress concentration at the root of the dendrite arms is great enough to cause plastic deformation though the agitation is moderate. Accordingly, dendrite fragmentation was suggested to be caused by fractured after fatigue erosion.

  • PDF

Refinement of the manganese nitrate solution prepared by leaching the reduced Ferromanganeses dust with nitric acid. (용해도 차이를 이용한 질산망간 용액의 정제)

  • Cho Young-Keun;Song Young-Jun;Lee Gye-Seung;Shin Kang-Ho;Kim Hyung-Seok;Kim Yun-Che;Cho Dong-Sung
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • Mn was extracted by using a nitric acid from the reduced ferromanganese dust and the basic experiments were taken to refine the manganese nitrate solution by means of precipitation of Ca, Mg oxalate. The dust was generated in AOD process producing a medium-low carbon ferromanganese and collected in the bag filter. Manganese oxide content in the dust was about 90% and its phase was confirmed as $Mn_3$$O_4$. $Mn_3$$O_4$ in the dust was reduced to MnO by roasting with activated charcoal. The main impurities in the extracted solution prepared by leaching the reduced dust with nitric acid were Na, K, Fe, Si, Ca, Mg etc. Among them, Fe was removed by controlling pH of the solution more than 4 and precipitating $Fe(OH)_3$, simultaneously silicious material solved in the solution was removed by co-precipitation with the ferric hydroxide. Addition of 150 g reduced dust into 4N HNO3 solution 1$\ell$ was appropriate to control the pH of the solution to pH 4. To differ greatly the solubilities of manganese oxalate and calcium or magnesium oxalate in a solution containing a high concentration of Mn, pH of 4 or less and addition of ($NH_4$)$_2$$C_2$$O_4$ in equivalent with Ca and Mg are recommended. At this time, the higher temperature was the shorter the precipitation reaction time was needed.

Refinement of the Structure of p-Dimethylaminobenzaldehyde 4-(p-Ethoxyphenyl) Thiosemicarbazone (p-Dimethylaminobenzaldehyde 4-(p-Ethoxyphenyl) Thiosemicarbazone구조의 정밀화)

  • Seo, Il-Hwan;Seo, Chu-Myeong;Park, Yeong-Ja
    • Korean Journal of Crystallography
    • /
    • v.2 no.1
    • /
    • pp.12-16
    • /
    • 1991
  • C18H22N4OS, Mr=342.47, monoclinic, P2₁/c,a=11.802(2), b=31.962(2), c=9.829(2)A, β=100.12(1)˚, V=3694.8A3,F(000)=1472, Z=8, Dx=1.246 Mg m-3, Dm=1.17Mg m-3,λ=0.71073 A, μ=0.15mm-1, T=294 K. final R=0.0856 for 3718 observed reflection (Fo>3σ(Fo)) There are two molecules in an asymmetric unit and a major difference between these molecules is in the C(9)-N(1)-C(6)-C(7) torsion angles [58.8(8)˚and 1(1)˚]. Both molecules have intramolecular N(1)-H(10)'N(3) hydrogen bonds [ 2.613(7) and 2.566(7) A] and assume V-shaped conformation with N(2) atoms at the verices. The two independent molecules are linked by the two N(2)-H(11)'S' hydrogen bonds[3.367(5) A and 3.421(4)A] and the dimergen are held together by van der Waals forces.

  • PDF

Simulation of eccentricity effects on short- and long-normal logging measurements using a Fourier-hp-finite-element method (Self-adaptive hp 유한요소법을 이용한 단.장노말 전기검층에서 손데의 편향 효과 수치모델링)

  • Nam, Myung-Jin;Pardo, David;Torres-Verdin, Carlos;Hwang, Se-Ho;Park, Kwon-Gyu;Lee, Chang-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.118-127
    • /
    • 2010
  • Resistivity logging instruments are designed to measure the electrical resistivity of a formation, and this can be directly interpreted to provide a water-saturation profile. However, resistivity logs are sensitive to borehole and shoulder-bed effects, which often result in misinterpretation of the results. These effects are emphasised more in the presence of tool eccentricity. For precise interpretation of short- and long-normal logging measurements in the presence of tool eccentricity, we simulate and analyse eccentricity effects by combining the use of a Fourier series expansion in a new system of coordinates with a 2D goal-oriented high-order self-adaptive hp finite-element refinement strategy, where h denotes the element size and p the polynomial order of approximation within each element. The algorithm automatically performs local mesh refinement to construct an optimal grid for the problem under consideration. In addition, the proper combination of h and p refinements produces highly accurate simulations even in the presence of high electrical resistivity contrasts. Numerical results demonstrate that our algorithm provides highly accurate and reliable simulation results. Eccentricity effects are more noticeable when the borehole is large or resistive, or when the formation is highly conductive.

Layered Metal Hydroxides Containing Calcium and Their Structural Analysis

  • Kim, Tae-Hyun;Heo, Il;Paek, Seung-Min;Park, Chung-Berm;Choi, Ae-Jin;Lee, Sung-Han;Choy, Jin-Ho;Oh, Jae-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1845-1850
    • /
    • 2012
  • Layered metal hydroxides (LMHs) containing calcium were synthesized by coprecipitation in solution having two different trivalent metal ions, iron and aluminum. Two mixed metal solutions ($Ca^{2+}/Al^{3+}$ and $Ca^{2+}/Fe^{3+}$ = 2/1) were added to sodium hydroxide solution and the final pH was adjusted to ~11.5 and ~13 for CaAl-and CaFe-LMHs. Powder X-ray diffraction (XRD) for the two LMH samples showed well developed ($00l$) diffractions indicating 2-dimensional crystal structure of the synthesized LMHs. Rietveld refinement of the X-ray diffraction pattern, the local structure analysis through X-ray absorption spectroscopy, and thermal analysis also confirmed that the synthesized precipitates show typical structure of LMHs. The chemical formulae, $Ca_{2.04}Al_1(OH)_6(NO_3){\cdot}5.25H_2O$ and $Ca_{2.01}Fe_1(OH)_6(NO_3){\cdot}4.75H_2O$ were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Particle morphology and thermal behavior for the synthesized LMHs were examined by field emission scanning electron microscopy and thermogravimetricdifferential scanning calorimetry.

The Rietveld Structure Refinement of Natural Phlogopite Using Neutron Powder Diffraction (중성자분말회절법을 이용한 금운모 결정에 대한 리트벨트 구조분석)

  • 이철규;송윤구;전철민;김신애;성기훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • The Rietveld structure refinement for the natural trioctahedral mica, phlogopite-1M (Parker Mine, Quebec, Canada) has been done by high resolution neutron powder diffraction at $25^{\circ}C$ and -263$^{\circ}C$. The structural formula of phlogopite determined by electron probe microanalysis is $K_2$(M $g_{4.46}$F $e_{0.83}$A $l_{0.34}$ $Ti_{0.22}$)(S $i_{5.51}$A $l_{2.49}$) $O_{20}$(O $H_{3.59}$ $F_{0.41}$). Cell parameters are a=5.30∼5.31 $\AA$, b=9.18∼9.20 $\AA$, c=10.18∼10.21 $\AA$, $\beta$=100.06∼100.08$^{\circ}$. Refinements converged to R values in the range of $R_{p}$=2.35%, $R_{wp}$=3.01%, respectively. In this study, the OH bond length is calculated to 0.93 $\AA$ at room temperature and 1.03 $\AA$ at -263$^{\circ}C$, and the angles between OH vector and (001) plane are obtained 93.4$^{\circ}$∼93.6$^{\circ}$. The decrease in the length of OH with the increase in temperature should be due to the hydrogen bonding in the structure of phogopite.e.e.f phogopite.e.e.