• 제목/요약/키워드: gut microbiome analysis

검색결과 53건 처리시간 0.023초

Effects of red ginseng extract on gut microbial distribution

  • Kim, Young Kyun;Yum, Keun-Sang
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.91-103
    • /
    • 2022
  • Background: Red ginseng extract boosts immunity against inflammation and cancer in the human body. However, studies on the effects of red ginseng extract on the gut microbiome remain unexplored. Methods: In 2019, the positive effects and changes in the gut microbiome after administering 1 pack (3 g) of red ginseng extract per day to 53 adults aged 40 to 75 for 24 weeks were investigated. The gut microbial environment changes were qualitatively and quantitatively analyzed using next-generation sequencing and real-time polymerase chain reaction technology. Results: On comparing and analyzing alpha diversity and beta diversity, the microbial pattern showed significant differences (OTUs p = 0.003, chao1 p < 0.001, Bray-Curtis p = 0.001) before and after ingestion of red ginseng extract, indicating that gut microbial richness increased after ingestion. Moreover, after comparing and analyzing the gut microbiome's differences after red ginseng extract intake, significant differences were noted between three strains at the phylum level and among 57 strains at the genus level. Conclusion: This study proposes the potential use of red ginseng extract as a prebiotic after confirming its positive effects, including increasing gut microbiome richness, reducing harm to the gut microbiome, and increasing the number of some strains in the gut microbiome.

호흡기질환에 대한 장내 미생물의 임상 연구 동향 (Clinical Research Trends of Gut Microbiome for Respiratory Diseases)

  • 이수원;최진관;양원경;김승형;유이란;박양춘
    • 대한한의학회지
    • /
    • 제42권3호
    • /
    • pp.119-138
    • /
    • 2021
  • Objectives: This study aimed to review the clinical research of the gut microbiome for respiratory diseases to assist the design of trials for respiratory diseases by regulating the gut microbiome with herbal medicine later. Methods: We searched three international databases (PubMed, CENTRAL and EMBASE) to investigate randomized controlled trials (RCTs) of the gut microbiome for respiratory diseases. The selected trials were analyzed by study design, subject diseases, inclusion/exclusion criteria, sample size, study period, intervention group, control group, outcome measures, and study results. Results: A total of 25 studies were included and published from 1994 to 2021 mostly in Europe and Asia. Subject diseases were many in the order of respiratory tract infection, cystic fibrosis, allergy, and so on. As outcome measures, the gut microbiome in a fecal sample was analyzed by 16S rRNA sequencing analysis method, and symptom assessment tools related each disease were used. Major intervention drugs were probiotics and the results were mostly improved in the composition and diversity of the gut microbiome. Conclusion: Clinical studies of the gut microbiome for respiratory diseases have confirmed various effects and this review provides basic data for a well-designed clinical study for respiratory diseases by regulating the gut microbiome with herbal medicine.

Translational gut microbiome research for strategies to improve beef cattle production sustainability and meat quality

  • Yasushi Mizoguchi;Le Luo Guan
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.346-359
    • /
    • 2024
  • Advanced and innovative breeding and management of meat-producing animals are needed to address the global food security and sustainability challenges. Beef production is an important industry for securing animal protein resources in the world and meat quality significantly contributes to the economic values and human needs. Improvement of cattle feed efficiency has become an urgent task as it can lower the environmental burden of methane gas emissions and the reduce the consumption of human edible cereal grains. Cattle depend on their symbiotic microbiome and its activity in the rumen and gut to maintain growth and health. Recent developments in high-throughput omics analysis (metagenome, metatranscriptome, metabolome, metaproteome and so on) have made it possible to comprehensively analyze microbiome, hosts and their interactions and to define their roles in affecting cattle biology. In this review, we focus on the relationships among gut microbiome and beef meat quality, feed efficiency, methane emission as well as host genetics in beef cattle, aiming to determine the current knowledge gaps for the development of the strategies to improve the sustainability of beef production.

Association between LEPR Genotype and Gut Microbiome in Healthy Non-Obese Korean Adults

  • Yoon Jung Cha;In Ae Chang;Eun-Heui Jin;Ji Hye Song;Jang Hee Hong;Jin-Gyu Jung;Jung Sunwoo
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.146-153
    • /
    • 2024
  • The LEPR (leptin receptor) genotype is associated with obesity. Gut microbiome composition differs between obese and non-obese adults. However, the impact of LEPR genotype on gut microbiome composition in humans has not yet been studied. In this study, the association between LEPR single nucleotide polymorphism (rs1173100, rs1137101, and rs790419) and the gut microbiome composition in 65 non-obese Korean adults was investigated. Leptin, triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels were also measured in all participants. Mean ± SD (standard deviation) of age, body mass index, and leptin hormone levels of participants was 35.2 ± 8.1 years, 21.4 ± 1.8 kg/m2, and 7989.1 ± 6687.4 pg/mL, respectively. Gut microbiome analysis was performed at the phylum level by 16S rRNA sequencing. Among the 11 phyla detected, only one showed significantly different relative abundances between LEPR genotypes. The relative abundance of Candidatus Saccharibacteria was higher in the G/A genotype group than in the G/G genotype group for the rs1137101 single nucleotide polymorphism (p=0.0322). Participant characteristics, including body mass index, leptin levels, and other lipid levels, were similar between the rs1137101 G/G and G/A genotypes. In addition, the relative abundances of Fusobacteria and Tenericutes showed significant positive relationship with plasma leptin concentrations (p=0.0036 and p=0.0000, respectively). In conclusion, LEPR genotype and gut microbiome may be associated even in normal-weight Korean adults. However, further studies with a greater number of obese adults are needed to confirm whether LEPR genotype is related to gut microbiome composition.

장내미생물 분석 플랫폼 구현을 위한 요구사항 분석 및 시스템 설계 (Requirements Analysis and System Design for the Implementation of the Gut Microbiome Analysis Platform)

  • 임복출;마상혁;마상배;최형민
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권6호
    • /
    • pp.487-496
    • /
    • 2021
  • The analysis method of the microbiome has been evolving for a very long time, and the industrial field has grown rapidly with the start of human genome analysis 20 years ago. As continuous research continues, related industries have grown together, and among them, Illumina of the US has been leading the popularization of DNA analysis by developing innovative equipment and analysis methods since its establishment in 1998. In this paper, 'AiB Index', 'AiB Chart' using statistical process control and log-scale technique to analyze the gut microbiome analysis methodology and implement an algorithm that can analyze minute changes in the minor strains that can be overlooked in the existing analysis methods. want to implement. From the data analysis point of view, we proposed a platform for analyzing gut microbes that can collect fecal data, match and process gut microbes, and store and visualize the results.

Difference of gut microbiota composition based on the body condition scores in dogs

  • Chun, Ju Lan;Ji, Sang Yun;Lee, Sung Dae;Lee, Yoo Kyung;Kim, Byeonghyeon;Kim, Ki Hyun
    • Journal of Animal Science and Technology
    • /
    • 제62권2호
    • /
    • pp.239-246
    • /
    • 2020
  • Microorganism residing in the gut has been known to have important roles in the animal body. Microbes and host microenvironment are highly related with host's health including energy metabolism and immune system. Moreover, it reported that gut microbiome is correlated with diseases like obesity in human and dogs. There have been many studies to identify and characterize microbes and their genes in human body. However, there was little information of microbiome in companion animals. Here, we investigated microbiota communities in feaces from twenty - four Beagles (aged 2 years old) and analyzed the taxonomy profile using metagenomics to study the difference among gut microbiome based on body condition score (BCS). gDNA was isolated from feaces, sequenced and clustered. Taxonomy profiling was performed based on the NCBI database. BCS was evaluated once a week according to the description provided by World Small Animal Veterinary Association. Firmicutes phylum was the most abundant followed by Bacteroidetes, Fusobacteria, Proteobacteria and Actinobacteria. That main microbiota in gut were differently distributed based on the BCS. Fusobacteria has been known to be associated with colon cancer in human. Interestingly, Fusobacteria was in the third level from the top in healthy dog's gut microbiome. In addition, Fusobacteria was especially higher in overweight dogs which had 6 scales of BCS. Species Fusobacterium perfoetens was also more abundant when dogs were in BCS 6. It implied that F. perfoetens would be positively related with overweight in dogs. These finding would contribute to further studies of gut microbiome and their functions to improve dog's diets and health condition.

High Plasticity of the Gut Microbiome and Muscle Metabolome of Chinese Mitten Crab (Eriocheir sinensis) in Diverse Environments

  • Chen, Xiaowen;Chen, Haihong;Liu, Qinghua;Ni, Kangda;Ding, Rui;Wang, Jun;Wang, Chenghui
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.240-249
    • /
    • 2021
  • Phenotypic plasticity is a rapid response mechanism that enables organisms to acclimate and survive in changing environments. The Chinese mitten crab (Eriocheir sinensis) survives and thrives in different and even introduced habitats, thereby indicating its high phenotypic plasticity. However, the underpinnings of the high plasticity of E. sinensis have not been comprehensively investigated. In this study, we conducted an integrated gut microbiome and muscle metabolome analysis on E. sinensis collected from three different environments, namely, an artificial pond, Yangcheng Lake, and Yangtze River, to uncover the mechanism of its high phenotypic plasticity. Our study presents three divergent gut microbiotas and muscle metabolic profiles that corresponded to the three environments. The composition and diversity of the core gut microbiota (Proteobacteria, Bacteroidetes, Tenericutes, and Firmicutes) varied among the different environments while the metabolites associated with amino acids, fatty acids, and terpene compounds displayed significantly different concentration levels. The results revealed that the gut microbiome community and muscle metabolome were significantly affected by the habitat environments. Our findings indicate the high phenotypic plasticity in terms of gut microbiome and muscle metabolome of E. sinensis when it faces environmental changes, which would also facilitate its acclimation and adaptation to diverse and even introduced environments.

A Pilot Study Exploring Temporal Development of Gut Microbiome/Metabolome in Breastfed Neonates during the First Week of Life

  • Imad Awan;Emily Schultz;John D. Sterrett;Lamya'a M. Dawud;Lyanna R. Kessler;Deborah Schoch;Christopher A. Lowry;Lori Feldman-Winter;Sangita Phadtare
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제26권2호
    • /
    • pp.99-115
    • /
    • 2023
  • Purpose: Exclusive breastfeeding promotes gut microbial compositions associated with lower rates of metabolic and autoimmune diseases. Its cessation is implicated in increased microbiome-metabolome discordance, suggesting a vulnerability to dietary changes. Formula supplementation is common within our low-income, ethnic-minority community. We studied exclusively breastfed (EBF) neonates' early microbiome-metabolome coupling in efforts to build foundational knowledge needed to target this inequality. Methods: Maternal surveys and stool samples from seven EBF neonates at first transitional stool (0-24 hours), discharge (30-48 hours), and at first appointment (days 3-5) were collected. Survey included demographics, feeding method, medications, medical history and tobacco and alcohol use. Stool samples were processed for 16S rRNA gene sequencing and lipid analysis by gas chromatography-mass spectrometry. Alpha and beta diversity analyses and Procrustes randomization for associations were carried out. Results: Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the most abundant taxa. Variation in microbiome composition was greater between individuals than within (p=0.001). Palmitic, oleic, stearic, and linoleic acids were the most abundant lipids. Variation in lipid composition was greater between individuals than within (p=0.040). Multivariate composition of the metabolome, but not microbiome, correlated with time (p=0.030). Total lipids, saturated lipids, and unsaturated lipids concentrations increased over time (p=0.012, p=0.008, p=0.023). Alpha diversity did not correlate with time (p=0.403). Microbiome composition was not associated with each samples' metabolome (p=0.450). Conclusion: Neonate gut microbiomes were unique to each neonate; respective metabolome profiles demonstrated generalizable temporal developments. The overall variability suggests potential interplay between influences including maternal breastmilk composition, amount consumed and living environment.

Exposure to low concentrations of mycotoxins triggers unique responses from the pig gut microbiome

  • Moon, Sung-Hyun;Koh, Sang-Eog;Oh, Yeonsu;Cho, Ho-Seong
    • 한국동물위생학회지
    • /
    • 제43권1호
    • /
    • pp.39-44
    • /
    • 2020
  • The aim of this study is to investigate how the gut microbiome shifts when pigs were exposed with low concentrations of mycotoxins, deoxynivalenol (DON) and zearalenone (ZEN) in feed. Fifteen of pigs, 15 kg in weight which were negative for PRRSV and PCV2 were purchased, acclimatized until 20 kg in weight, and randomly divided into 3 groups; the DON group (DON treated), the ZEN group (ZEN treated) and the CTL (untreated negative control). DON and ZEN administered to each group for 30 days at 0.8 mg/kg (800 ppb) and 0.20 mg/kg (200 ppb) in feed, respectively. After extraction of microbial DNA from intestine and fecal samples, sequencing procedures were performed in the Ion PGM using an Ion 316 V2 chip and Ion PGM sequencing 400 kit. The results suggested that the bacterial communities in duodenum, jejunum and ileum of the DON and ZEN groups presented low-abundant OTUs compared with the CTL group. OTUs in cecum, colon and feces were determined more than in small intestine of all three groups. However, the CTL group yielded more OTUs than other two groups in inter-group comparison. It is not fully clarified how the richness and abundance in microbiome functions in the health condition of animals, however, the exposure to DON and ZEN has caused microbial population shifts representing microbial succession and changes following the diversity and abundance of porcine gut microbiome. The metabolomic analysis correlate with microbiome analysis is needed for further study.

Unveiling the Gastrointestinal Microbiome Symphony: Insights Into Post-Gastric Cancer Treatment Microbial Patterns and Potential Therapeutic Avenues

  • Chan Hyuk Park
    • Journal of Gastric Cancer
    • /
    • 제24권1호
    • /
    • pp.89-98
    • /
    • 2024
  • This review delved into the intricate relationship between the gastrointestinal microbiome and gastric cancer, particularly focusing on post-treatment alterations, notably following gastrectomy, and the effects of anticancer therapies. Following gastrectomy, analysis of fecal samples revealed an increased presence of oral cavity aerotolerant and bile acid-transforming bacteria in the intestine. Similar changes were observed in the gastric microbiome, highlighting significant alterations in taxon abundance and emphasizing the reciprocal interaction between the oral and gastric microbiomes. In contrast, the impact of chemotherapy and immunotherapy on the gut microbiome was subtle, although discernible differences were noted between treatment responders and non-responders. Certain bacterial taxa showed promise as potential prognostic markers. Notably, probiotics emerged as a promising approach for postgastrectomy recovery, displaying the capacity to alleviate inflammation, bolster immune responses, and maintain a healthy gut microbiome. Several strains, including Bifidobacterium, Lactobacillus, and Clostridium butyricum, exhibited favorable outcomes in postoperative patients, suggesting their potential roles in comprehensive patient care. In conclusion, understanding the intricate interplay between the gastrointestinal microbiome and gastric cancer treatment offers prospects for predicting responses and enhancing postoperative recovery. Probiotics, with their positive impact on inflammation and immunity, have emerged as potential adjuncts in patient care. Continued research is imperative to fully harness the potential of microbiome-based interventions in the management of gastric cancer.