• 제목/요약/키워드: gut immunity

검색결과 56건 처리시간 0.228초

Antimicrobials, Gut Microbiota and Immunity in Chickens

  • Lee, Kyung-Woo;Lillehoj, Hyun S.
    • 한국가금학회지
    • /
    • 제38권2호
    • /
    • pp.155-164
    • /
    • 2011
  • The use of antimicrobials will be soon removed due to an increase of occurrence of antibiotic-resistant bacteria or ionophore-resistant Eimeria species in poultry farms and consumers' preference on drug-free chicken meats or eggs. Although dietary antimicrobials contributed to the growth and health of the chickens, we do not fully understand their interrelationship among antimicrobials, gut microbiota, and host immunity in poultry. In this review, we explored the current understanding on the effects of antimicrobials on gut microbiota and immune systems of chickens. Based on the published literatures, it is clear that antibiotics and antibiotic ionophores, when used singly or in combination could influence gut microbiota. However, antimicrobial effect on gut microbiota varied depending on the samples (e.g., gut locations, digesta vs. mucosa) used and among the experiments. It was noted that the digesta vs. the mucosa is the preferred sample with the results of no change, increase, or decrease in gut microbiota community. In future, the mucosa-associated bacteria should be targeted as they are known to closely interact with the host immune system and pathogen control. Although limited, dietary antimicrobials are known to modulate humoral and cell-mediated immunities. Ironically, the evidence is increasing that dietary antimicrobials may play an important role in triggering enteric disease such as gangrenous dermatitis, a devastating disease in poultry industry. Future work should be done to unravel our understanding on the complex interaction of host-pathogen-microbiota-antimicrobials in poultry.

Gut Microbiota in Inflammatory Bowel Disease

  • Shim, Jung Ok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제16권1호
    • /
    • pp.17-21
    • /
    • 2013
  • The gut mucosal barrier plays an important role in maintaining a delicate immune homeostasis. The pathogenesis of inflammatory bowel disease (IBD) is considered to involve a defective mucosal immunity along with a genetic predisposition. Recent views have suggested an excessive response to components of the gut microbiota in IBD. A condition of "dysbiosis", with alterations of the gut microbial composition, has been observed in patients with IBD. In this article, the author review recent studies of gut microbiota in IBD, particularly the importance of the gut microbiota in the pathogenesis of pediatric IBD.

Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals

  • Patra, Amlan Kumar;Kar, Indrajit
    • Journal of Animal Science and Technology
    • /
    • 제63권2호
    • /
    • pp.211-247
    • /
    • 2021
  • Livestock species experience several stresses, particularly weaning, transportation, overproduction, crowding, temperature, and diseases in their life. Heat stress (HS) is one of the most stressors, which is encountered in livestock production systems throughout the world, especially in the tropical regions and is likely to be intensified due to global rise in environmental temperature. The gut has emerged as one of the major target organs affected by HS. The alpha- and beta-diversity of gut microbiota composition are altered due to heat exposure to animals with greater colonization of pathogenic microbiota groups. HS also induces several changes in the gut including damages of microstructures of the mucosal epithelia, increased oxidative insults, reduced immunity, and increased permeability of the gut to toxins and pathogens. Vulnerability of the intestinal barrier integrity leads to invasion of pathogenic microbes and translocation of antigens to the blood circulations, which ultimately may cause systematic inflammations and immune responses. Moreover, digestion of nutrients in the guts may be impaired due to reduced enzymatic activity in the digesta, reduced surface areas for absorption and injury to the mucosal structure and altered expressions of the nutrient transport proteins and genes. The systematic hormonal changes due to HS along with alterations in immune and inflammatory responses often cause reduced feed intake and production performance in livestock and poultry. The altered microbiome likely orchestrates to the hosts for various relevant biological phenomena occurring in the body, but the exact mechanisms how functional communications occur between the microbiota and HS responses are yet to be elucidated. This review aims to discuss the effects of HS on microbiota composition, mucosal structure, oxidant-antioxidant balance mechanism, immunity, and barrier integrity in the gut, and production performance of farm animals along with the dietary ameliorations of HS. Also, this review attempts to explain the mechanisms how these biological responses are affected by HS.

Effects of red ginseng extract on gut microbial distribution

  • Kim, Young Kyun;Yum, Keun-Sang
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.91-103
    • /
    • 2022
  • Background: Red ginseng extract boosts immunity against inflammation and cancer in the human body. However, studies on the effects of red ginseng extract on the gut microbiome remain unexplored. Methods: In 2019, the positive effects and changes in the gut microbiome after administering 1 pack (3 g) of red ginseng extract per day to 53 adults aged 40 to 75 for 24 weeks were investigated. The gut microbial environment changes were qualitatively and quantitatively analyzed using next-generation sequencing and real-time polymerase chain reaction technology. Results: On comparing and analyzing alpha diversity and beta diversity, the microbial pattern showed significant differences (OTUs p = 0.003, chao1 p < 0.001, Bray-Curtis p = 0.001) before and after ingestion of red ginseng extract, indicating that gut microbial richness increased after ingestion. Moreover, after comparing and analyzing the gut microbiome's differences after red ginseng extract intake, significant differences were noted between three strains at the phylum level and among 57 strains at the genus level. Conclusion: This study proposes the potential use of red ginseng extract as a prebiotic after confirming its positive effects, including increasing gut microbiome richness, reducing harm to the gut microbiome, and increasing the number of some strains in the gut microbiome.

Pathophysiology and protective approaches of gut injury in critical illness

  • Jung, Chang Yeon;Bae, Jung Min
    • Journal of Yeungnam Medical Science
    • /
    • 제38권1호
    • /
    • pp.27-33
    • /
    • 2021
  • The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.

버섯 섭취와 장내 미생물 균총의 변화 (Changes in gut microbiota with mushroom consumption)

  • 김의진;신현재
    • 한국버섯학회지
    • /
    • 제19권3호
    • /
    • pp.115-125
    • /
    • 2021
  • 버섯의 섭취는 버섯의 유용 성분에 의해 면역체계 및 장내미생물균총의 변화를 유발한다. 그중 많이 알려진 β-glucan 구조 기반 물질들은 염증매개물질의 분비는 억제하고 대식세포의 활성은 유발하여 면역력의 증진을 도와인체의 면역기능을 증진시킨다. 직접적인 유용 성분 이외의 다른 물질은 장내 미생물균총에 의해 단쇄지방산으로 변화되며, 변화된 단쇄지방산은 면역 및 다양한 질병의 완화를 유발하게 된다. 버섯이 포함하고 있는 성분은 β-glucan 외에도 장내미생물균총을 변화하게 유도하는 prebiotic로써의 역할을 수행하게 된다. 변화된 장내미생물균총은 외부로부터 들어오는 다양한 감염성 균의 감염을 막으며, 면역체계의 균형 유지를 도우며, 질병을 예방하게 된다. 국내 섭취 빈도가 높은 새송이, 표고, 느타리, 팽이, 목이, 양송이 버섯의 유용 성분의 탐색, 장내미생물균총의 변화 및 섭취 시 인체의 단쇄지방산 변화 연구는 추후 버섯의 유용 성분, 장내미생물 및 질병과의 인과관계를 풀어내는데 기여할 것으로 여겨진다.

Microbial Components and Effector Molecules in T Helper Cell Differentiation and Function

  • Changhon Lee;Haena Lee;John Chulhoon Park;Sin-Hyeog Im
    • IMMUNE NETWORK
    • /
    • 제23권1호
    • /
    • pp.7.1-7.27
    • /
    • 2023
  • The mammalian intestines harbor trillions of commensal microorganisms composed of thousands of species that are collectively called gut microbiota. Among the microbiota, bacteria are the predominant microorganism, with viruses, protozoa, and fungi (mycobiota) making up a relatively smaller population. The microbial communities play fundamental roles in the maturation and orchestration of the immune landscape in health and disease. Primarily, the gut microbiota modulates the immune system to maintain homeostasis and plays a crucial role in regulating the pathogenesis and pathophysiology of inflammatory, neuronal, and metabolic disorders. The microbiota modulates the host immune system through direct interactions with immune cells or indirect mechanisms such as producing short-chain acids and diverse metabolites. Numerous researchers have put extensive efforts into investigating the role of microbes in immune regulation, discovering novel immunomodulatory microbial species, identifying key effector molecules, and demonstrating how microbes and their key effector molecules mechanistically impact the host immune system. Consequently, recent studies suggest that several microbial species and their immunomodulatory molecules have therapeutic applicability in preclinical settings of multiple disorders. Nonetheless, it is still unclear why and how a handful of microorganisms and their key molecules affect the host immunity in diverse diseases. This review mainly discusses the role of microbes and their metabolites in T helper cell differentiation, immunomodulatory function, and their modes of action.

Regulation of Intestinal Homeostasis by Innate Immune Cells

  • Kayama, Hisako;Nishimura, Junichi;Takeda, Kiyoshi
    • IMMUNE NETWORK
    • /
    • 제13권6호
    • /
    • pp.227-234
    • /
    • 2013
  • The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

Gut microbiota profiling in aged dogs after feeding pet food contained Hericium erinaceus

  • Hyun-Woo, Cho;Soyoung, Choi;Kangmin, Seo;Ki Hyun, Kim;Jung-Hwan, Jeon;Chan Ho, Kim;Sejin, Lim;Sohee, Jeong;Ju Lan, Chun
    • Journal of Animal Science and Technology
    • /
    • 제64권5호
    • /
    • pp.937-949
    • /
    • 2022
  • Health concern of dogs is the most important issue for pet owners. People who have companied the dogs long-term provide the utmost cares for their well-being and healthy life. Recently, it was revealed that the population and types of gut microbiota affect the metabolism and immunity of the host. However, there is little information on the gut microbiome of dogs. Hericium erinaceus (H. erinaceus; HE) is one of the well-known medicinal mushrooms and has multiple bioactive components including polyphenol, β-glucan, polysaccharides, ergothioneine, hericerin, erinacines, etc. Here we tested a pet food that contained H. erinaceus for improvement in the gut microbiota environment of aged dogs. A total of 18 dogs, each 11 years old, were utilized. For sixteen weeks, the dogs were fed with 0.4 g of H. erinaceus (HE-L), or 0.8 g (HE-H), or without H. erinaceus (CON) per body weight (kg) with daily diets (n = 6 per group). Taxonomic analysis was performed using metagenomics to investigate the difference in the gut microbiome. Resulting from principal coordinates analysis (PCoA) to confirm the distance difference between the groups, there was a significant difference between HE-H and CON due to weighted Unique fraction metric (Unifrac) distance (p = 0.047), but HE-L did not have a statistical difference compared to that of CON. Additionally, the result of Linear discriminate analysis of effect size (LEfSe) showed that phylum Bacteroidetes in HE-H and its order Bacteroidales increased, compared to that of CON, Additionally, phylum Firmicutes in HE-H, and its genera (Streptococcus, Tyzzerella) were reduced. Furthermore, at the family level, Campylobacteraceae and its genus Campylobacter in HE-H was decreased compared to that of CON. Summarily, our data demonstrated that the intake of H. erinaceus can regulate the gut microbial community in aged dogs, and an adequate supply of HE on pet diets would possibly improve immunity and anti-obesity on gut-microbiota in dogs.

Enhanced pig production: potential use of insect gut microbiota for pig production

  • Shin, Jiwon;Kim, Bo-Ra;Guevarra, Robin B.;Lee, Jun Hyung;Lee, Sun Hee;Kim, Young Hwa;Wattanaphansak, Suphot;Kang, Bit Na;Kim, Hyeun Bum
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.655-663
    • /
    • 2018
  • The insect gut microbiome is known to have important roles in host growth, development, digestion, and resistance against pathogens. In addition, the genetic diversity of the insect gut microbiota has recently been recognized as potential genetic resources for industrial bioprocessing. However, there is limited information regarding the insect gut microbiota to better help us understand their potential benefits for enhanced pig production. With the development of next-generation sequencing methods, whole genome sequence analysis has become possible beyond traditional culture-independent methods. This improvement makes it possible to identify and characterize bacteria that are not cultured and located in various environments including the gastrointestinal tract. Insect intestinal microorganisms are known to have an important role in host growth, digestion, and immunity. These gut microbiota have recently been recognized as potential genetic resources for livestock farming which is using the functions of living organisms to integrate them into animal science. The purpose of this literature review is to emphasize the necessity of research on insect gut microbiota and their applicability to pig production or bioindustry. In conclusion, bacterial metabolism of feed in the gut is often significant for the nutrition intake of animals, and the insect gut microbiome has potential to be used as feed additives for enhanced pig performance. The exploration of the structure and function of the insect gut microbiota needs further investigation for their potential use in the swine industry particularly for the improvement of growth performance and overall health status of pigs.