• Title/Summary/Keyword: guided filtering

Search Result 46, Processing Time 0.024 seconds

A Method of Coupling Expected Patch Log Likelihood and Guided Filtering for Image De-noising

  • Wang, Shunfeng;Xie, Jiacen;Zheng, Yuhui;Wang, Jin;Jiang, Tao
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.552-562
    • /
    • 2018
  • With the advent of the information society, image restoration technology has aroused considerable interest. Guided image filtering is more effective in suppressing noise in homogeneous regions, but its edge-preserving property is poor. As such, the critical part of guided filtering lies in the selection of the guided image. The result of the Expected Patch Log Likelihood (EPLL) method maintains a good structure, but it is easy to produce the ladder effect in homogeneous areas. According to the complementarity of EPLL with guided filtering, we propose a method of coupling EPLL and guided filtering for image de-noising. The EPLL model is adopted to construct the guided image for the guided filtering, which can provide better structural information for the guided filtering. Meanwhile, with the secondary smoothing of guided image filtering in image homogenization areas, we can improve the noise suppression effect in those areas while reducing the ladder effect brought about by the EPLL. The experimental results show that it not only retains the excellent performance of EPLL, but also produces better visual effects and a higher peak signal-to-noise ratio by adopting the proposed method.

A New Hybrid Algorithm for Invariance and Improved Classification Performance in Image Recognition

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.85-96
    • /
    • 2020
  • It is important to extract salient object image and to solve the invariance problem for image recognition. In this paper we propose a new hybrid algorithm for invariance and improved classification performance in image recognition, whose algorithm is combined by FT(Frequency-tuned Salient Region Detection) algorithm, Guided filter, Zernike moments, and a simple artificial neural network (Multi-layer Perceptron). The conventional FT algorithm is used to extract initial salient object image, the guided filtering to preserve edge details, Zernike moments to solve invariance problem, and a classification to recognize the extracted image. For guided filtering, guided filter is used, and Multi-layer Perceptron which is a simple artificial neural networks is introduced for classification. Experimental results show that this algorithm can achieve a superior performance in the process of extracting salient object image and invariant moment feature. And the results show that the algorithm can also classifies the extracted object image with improved recognition rate.

Image Dehazing Enhancement Algorithm Based on Mean Guided Filtering

  • Weimin Zhou
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.417-426
    • /
    • 2023
  • To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.

Effective Single Image Haze Removal using Edge-Preserving Transmission Estimation and Guided Image Filtering (에지 보존 전달량 추정 및 Guided Image Filtering을 이용한 효과적인 단일 영상 안개 제거)

  • Kim, Jong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1303-1310
    • /
    • 2021
  • We propose an edge-preserving transmission estimation by comparing the patch-based dark channel and the pixel-based dark channel near the edge, in order to improve the quality of outdoor images deteriorated by conditions such as fog and smog. Moreover, we propose a refinement that applies the Guided Image Filtering (GIF), a kind of edge-preserving smoothing filtering methods, to edges using Laplacian operation for natural restoration of image objects and backgrounds, so that we can dehaze a single image and improve the visibility effectively. Experimental results carried out on various outdoor hazy images that show the proposed method has less computational complexity than the conventional methods, while reducing distortion such as halo effect, and showing excellent dehazing performance. In It can be confirmed that the proposed method can be applied to various fields including devices requiring real-time performance.

Stereo Matching Algorithm Based on Fast Guided Image Filtering for 3-Dimensional Video Service (3차원 비디오 서비스를 위한 고속 유도 영상 필터링 기반 스테레오 매칭 알고리즘)

  • Hong, Gwang-Soo;Kim, Byung-Gyu
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.523-529
    • /
    • 2016
  • Stereo matching algorithm is an essential part in computer vision and photography. Accuracy and computational complexity are challenges of stereo matching algorithm. Much research has been devoted to stereo matching based on cost volume filtering of matching costs. Local stereo matching based guided image filtering (GIF) has a computational complexity of O(N), but is still not enough to provide real-time 3-dimensional (3-D) video services. The proposed algorithm concentrates reduction of computational complexity using the concept of fast guided image filter, which increase the speed up to $O(N/\small{s}^2)$ with a sub-sampling ratio $\small{s}$. Experimental results indicated that the proposed algorithm achieves effective local stereo matching as well as a fast execution time for 3-D video service.

Characteristic Analysis of Electromagnetic-ultrasonic Guided Waves for Defect Signals in Condenser Tubes (전자기유도초음파를 이용한 복수기 전열관 결함신호 특성분석)

  • Choi, Sang-Hoon;Wang, Gi-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.174-178
    • /
    • 2015
  • This paper describes a signal processing technique for identifying signals from defects by using an electromagnetic-ultrasonic guided waves method based on a magnetostrictive sensor that generates a torsional mode (T(0, 1)). Because this technique is based on the digital filtering, the filtered signals provide information on the relationship between the cutoff frequency of band-pass filter and the characteristic of defect signals in heat exchange tubes. To verify the performance of the technique, artificial defects with various thickness reduction ration and shape were machined in titanium tubes, and digital filtering results are reported. The results show that digital filtering provides information to the identify shape of defects and the contact condition between the tube and support ring. Therefore, the proposed technique has good potential as a tool for evaluating the integrity of heat exchange tubes.

Adaptive Histogram Projection And Detail Enhancement for the Visualization of High Dynamic Range Infrared Images

  • Lee, Dong-Seok;Yang, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2016
  • In this paper, we propose an adaptive histogram projection technique for dynamic range compression and an efficient detail enhancement method which is enhancing strong edge while reducing noise. First, The high dynamic range image is divided into low-pass component and high-pass component by applying 'guided image filtering'. After applying 'guided filter' to high dynamic range image, second, the low-pass component of the image is compressed into 8-bit with the adaptive histogram projection technique which is using global standard deviation value of whole image. Third, the high-pass component of the image adaptively reduces noise and intensifies the strong edges using standard deviation value in local path of the guided filter. Lastly, the monitor display image is summed up with the compressed low-pass component and the edge-intensified high-pass component. At the end of this paper, the experimental result show that the suggested technique can be applied properly to the IR images of various scenes.

Edge Preserving Smoothing in Infrared Image using Relativity of Guided Filter

  • Kim, Il-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.27-33
    • /
    • 2018
  • In this paper, we propose an efficient edge preserving smoothing filter for Infrared image that can reduce noise while preserving edge information. Infrared images suffer from low signal-to-noise ratio, low edge detail information and low contrast. So, detail enhancement and noise reduction play crucial roles in infrared image processing. We first apply a guided image filter as a local analysis. After the filtering process, we optimization globally using relativity of guided image filter. Our method outperforms the previous methods in removing the noise while preserving edge information and detail enhancement.

A Tone Mapping Algorithm Based on Multi-scale Decomposition

  • Li, Weizhong;Yi, Benshun;Huang, Taiqi;Yao, Weiqing;Peng, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1846-1863
    • /
    • 2016
  • High dynamic range (HDR) images can present the perfect real scene and rich color information. A commonly encountered problem in practical applications is how to well visualize HDR images on standard display devices. In this paper, we propose a multi-scale decomposition method using guided filtering for HDR image tone mapping. In our algorithm, HDR images are directly decomposed into three layers:base layer, coarse scale detail layer and fine detail layer. We propose an effective function to compress the base layer and the coarse scale detail layer. An adaptive function is also proposed for detail adjustment. Experimental results show that the proposed algorithm effectively accomplishes dynamic range compression and maintains good global contrast as well as local contrast. It also presents more image details and keeps high color saturation.

Image Enhancement Algorithm and its Application in Image Defogging

  • Jun Cao
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.465-473
    • /
    • 2023
  • An image enhancement algorithm and image defogging method are studied in this paper. The formation of fog and the characteristics of fog image are analyzed, and the fog image is preprocessed by histogram equalization method; then the additive white noise is removed by foggy image attenuation model, the atmospheric scattering physical model is constructed, the image detail characteristics are enhanced by image enhancement method, and the visual effect of defogging image is enhanced by guided filtering method. The proposed method has a good defogging effect on the image. When the number of training iterations is 3,000, the peak signal-to-noise ratio of the proposed method is 43.29 dB and the image structure similarity is 0.9616, indicating excellent image defogging effect.