• 제목/요약/키워드: guided bone regeneration(GBR)

검색결과 80건 처리시간 0.027초

Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects

  • Kim, Jwa-Young;Yang, Byoung-Eun;Ahn, Jin-Hee;Park, Sang O;Shim, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.539-546
    • /
    • 2014
  • PURPOSE. Silk fibroin (SF) is a new degradable barrier membrane for guided bone regeneration (GBR) that can reduce the risk of pathogen transmission and the high costs associated with the use of collagen membranes. This study compared the efficacy of SF membranes on GBR with collagen membranes (Bio-$Gide^{(R)}$) using a rat calvarial defect model. MATERIALS AND METHODS. Thirty-six male Sprague Dawley rats with two 5 mm-sized circular defects in the calvarial bone were prepared (n=72). The study groups were divided into a control group (no membrane) and two experimental groups (SF membrane and Bio-$Gide^{(R)}$). Each group of 24 samples was subdivided at 2, 4, and 8 weeks after implantation. New bone formation was evaluated using microcomputerized tomography and histological examination. RESULTS. Bone regeneration was observed in the SF and Bio-$Gide^{(R)}$-treated groups to a greater extent than in the control group (mean volume of new bone was $5.49{\pm}1.48mm^3$ at 8 weeks). There were different patterns of bone regeneration between the SF membrane and the Bio-$Gide^{(R)}$ samples. However, the absolute volume of new bone in the SF membrane-treated group was not significantly different from that in the collagen membrane-treated group at 8 weeks ($8.75{\pm}0.80$ vs. $8.47{\pm}0.75mm^3$, respectively, P=.592). CONCLUSION. SF membranes successfully enhanced comparable volumes of bone regeneration in calvarial bone defects compared with collagen membranes. Considering the lower cost and lesser risk of infectious transmission from animal tissue, SF membranes are a viable alternative to collagen membranes for GBR.

성견에서 차단막/골이식재 복합체를 이용한 임플란트 주위 골유도재생 효과: 임상적, 방사선학적, 조직학적 평가 (Local ridge augmentation using a composite of bone substitute and collagen membrane at peri-implant dehiscence defects: a clinical, radiographic and histological analyses.)

  • 송영우;윤소라;차재국;이중석;최성호;정의원
    • 대한치과의사협회지
    • /
    • 제55권10호
    • /
    • pp.676-687
    • /
    • 2017
  • Objectives : The aim of this study was to evaluate the effects of a composite of bone substitute and collagen barrier membrane (bone patch) for local ridge augmentation at peri-implant dehiscence defects on the clinical efficacy and positional stability in dogs. Materials and methods : Implant placement and ridge augmentation procedure were performed at surgically created peri-implant dehiscence defects in canine mandible (n=6). Four treatment modalities were randomly applied: i) bone patch group, ii) Guided bone regeneration (GBR) without pin fixation group (bone graft and collagen membrane), iii) GBR with pin fixation group, and iv) negative control group. After 12 weeks, clinical, micro-CT and histological analyses were performed. Results : Histologic analysis showed that bone patch group had similar results to GBR group and GBR with fixation group in terms of new bone formation. Micro-CT analysis revealed similar results to histologic analysis in terms of total volume maintenance. Operating time was shorter in bone patch group compared to GBR group and GBR with fixation groups. Conclusions : GBR using bone patch could simplify the ridge augmentation procedure with reduced operating time and equivalent biological performance compared to the conventional procedure.

  • PDF

Membranes for the Guided Bone Regeneration

  • Lee, Sang-Woon;Kim, Seong-Gon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제36권6호
    • /
    • pp.239-246
    • /
    • 2014
  • Many kinds of membrane have been used for the guided bone regeneration (GBR) technique. However, most membranes do not fulfill all requirements for the ideal membrane for the GBR technique. Among them, collagen membrane has been most widely used. However, its high price and weak tensile strength in wet condition are limitations for wide clinical application. Synthetic polymers have also been used for the GBR technique. Recently, silk based membrane has been considered as a membrane for the GBR technique. Despite many promising preclinical data for use of a silk membrane, clinical data regarding the silk membrane has been limited. However, silk based material has been used clinically as vessel-tie material and an electrospun silk membrane was applied successfully to patients. No adverse effect related to the silk suture has been reported. Considering that silk membrane can be provided to patients at a cheap price, its clinical application should be encouraged.

상악 구치 부에서 골계생술시 협지방체를 이용한 연조직 피개 : 문헌 고찰 및 증례보고 (The use of the buccal fat pad for guided bone regeneration in posterior maxilla: Review of the literature and report of 2 cases)

  • 성헌모
    • 대한치과의사협회지
    • /
    • 제47권3호
    • /
    • pp.122-130
    • /
    • 2009
  • For the successful guided bone regeneration(GBR) of maxillary bony defect, proper soft tissue coverage is one of the most important things. Soft tissue dehiscence can be most common reason of osseous reconstruction failure. If a vascular supply to the graft should not develop from the host tissue, then the graft may also foil. Both of these prerequisites can be aided by judicious use of the buccal fat pad(BFP). Many methods for adequate soft tissue coverage have been proposed and the use of the BFP is one of them. BFP is useful in posterior maxillary area, can cover larger area and have higher blood flow than other methods. so the use of the BFP may offer protection and early blood supply to maxillary bone graft. This report describes the history, anatomy, blood flow, and clinical usefulness with two clinical cases.

  • PDF

A study of bone regeneration effect according to the two different graft bone materials in the cranial defects of rabbits

  • Song, Hyun-Jong;Kim, Hyun-Woo;Min, Gwi-Hyeon;Lee, Won-Pyo;Yu, Sang-Joun;Kim, Byung-Ock
    • 구강생물연구
    • /
    • 제42권4호
    • /
    • pp.198-207
    • /
    • 2018
  • Guided tissue regeneration (GBR) has been used to promote new bone formation in alveolar bone reconstruction at defective bone sites following tooth loss. Bone grafts used in GBR can be categorized into autogenous, xenogenous, and synthetic bones, and human allografts depending on the origin. The purpose of this study was to compare the rates of bone regeneration using two different bone grafts in the cranial defects of rabbits. Ten New Zealand rabbits were used in this study. Four defects were created in each surgical site. Each defect was filled as follows: with nothing, using a 50% xenograft and 50% human freeze-dried bone allograft (FDBA) depending on the volume rate, human FDBA alone, and xenograft alone. After 4 to 8 weeks of healing, histological and histomorphometric analyses were carried out. At 4 weeks, new bone formation occurred as follows: 18.3% in the control group, 6.5% in group I, 8.8% in group II, and 4.2% in group III. At 8 weeks, the new bone formation was 14.9% in the control group, 36.7% in group I, 39.2% in group II, and 16.8% in group III. The results of this study suggest that the higher the proportion of human FDBA in GBR, the greater was the amount of clinically useful new bone generated. The results confirm the need for adequate healing period to ensure successful GBR with bone grafting.

Collagen electrospun chitosan-PLLA membrane for guided bone regeneration

  • Baek, Hyon-Jin;Kim, Kyung-Hwa;Jung, Ji-Eun;Lee, Ju-Yeon;Ku, young;Chung, Chong-Pyung;Lee, Seung-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.229.1-229.1
    • /
    • 2003
  • Recently, the barrier membranes have been applied for regenerating bone surrounding peri-implant defects in guided bone regeneration(GBR). GBR membrane should provide mechanical support sufficient to withstand in vivo forces and maintain wound space for bone regeneration. The ability to exclude unwanted tissues of cells(connective tissue and epithelium) is needed. In addition large surface area is conductive to tissue ingrowth. The search for ideal materials that biocompatible, bioresorbable and can support the growth and phenotypic expression of osteoblasts is a major challenge in the biomedical application for the repair of bone defects. (omitted)

  • PDF

Risk Factors for Wound Dehiscence after Guided Bone Regeneration in Dental Implant Surgery

  • Kim, Young-Kyun;Yun, Pil-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제36권3호
    • /
    • pp.116-123
    • /
    • 2014
  • Purpose: The purpose of this study was to evaluate risks for wound dehiscence after guided bone regeneration (GBR) in dental implant surgery. Methods: Patients who received dental implant therapy with GBR procedure at Seoul National University Bundang Hospital (Seongnam, Korea) from June 2004 to May 2007 were included. The clinical outcome of interest was complications related to dental implant surgery. The factors influencing wound dehiscence, classified into patient-related factors, surgery-related factors and material-related factors, were evaluated. Results: One hundred and fifteen cases (202 implants) were included in this study. Wound dehiscence (19.1%) was considered a major complication. The risk of wound dehiscence was higher in males than in females (odds ratio=4.279, P =0.014). In the main graft, the allogenic group had the lowest risk of wound dehiscence (odds ratio=0.106, P =0.006). Though the external connection group had a higher risk of wound dehiscence than the internal connection group (odds ratio=2.381), the difference was not significant (P =0.100). Conclusion: In this study, male gender and main graft have the highest risk of wound dehiscence. To reduce wound dehiscence after GBR, instructions on postoperative care with supplementary procedure for the protection of the wound dehiscence is recommended, especially to male patients. A main graft with a gel base can reduce the risk of wound dehiscence.

Immediate implant placement in conjunction with guided bone regeneration and/or connective tissue grafts: an experimental study in canines

  • Lim, Hyun-Chang;Paeng, Kyeong-Won;Kim, Myong Ji;Jung, Ronald E.;Hammerle, Christoph HF.;Jung, Ui-Won;Thoma, Daniel S.
    • Journal of Periodontal and Implant Science
    • /
    • 제52권2호
    • /
    • pp.170-180
    • /
    • 2022
  • Purpose: This study was conducted to assess the effect of hard and/or soft tissue grafting on immediate implants in a preclinical model. Methods: In 5 mongrel dogs, the distal roots of P2 and P3 were extracted from the maxilla (4 sites in each animal), and immediate implant placement was performed. Each site was randomly assigned to 1 of the following 4 groups: i) gap filling with guided bone regeneration (the GBR group), ii) subepithelial connective tissue grafting (the SCTG group), iii) GBR and SCTG (the GBR/SCTG group), and iv) no further treatment (control). Non-submerged healing was provided for 4 months. Histological and histomorphometric analyses were performed. Results: Peri-implant tissue height and thickness favored the SCTG group (height of periimplant mucosa: 1.14 mm; tissue thickness at the implant shoulder and ±1 mm from the shoulder: 1.14 mm, 0.78 mm, and 1.57 mm, respectively; median value) over the other groups. Bone grafting was not effective at the level of the implant shoulder and on the coronal level of the shoulder. In addition, simultaneous soft and hard tissue augmentation (the GBR/SCTG group) led to a less favorable tissue contour compared to GBR or SCTG alone (height of periimplant mucosa: 3.06 mm; thickness of peri-implant mucosa at the implant shoulder and ±1 mm from the shoulder: 0.72 mm, 0.3 mm, and 1.09 mm, respectively). Conclusion: SCTG tended to have positive effects on the thickness and height of the periimplant mucosa in immediate implant placement. However, simultaneous soft and hard tissue augmentation might not allow a satisfactory tissue contour in cases where the relationship between implant position and neighboring bone housing is unfavorable.

무기인산염이 골유도재생에 미치는 영향 (Effect of inorganic polyphosphate on guided bone regeneration)

  • 정종혁;권영혁;박준봉;허익
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.491-510
    • /
    • 2005
  • This study was performed to evaluate the effect of inorganic polyphosphate on bone formation in the calvaria of rabbit in the procedure of guided bone regeneration with bovine cancellous bone graft and titanium reinforced expanded polytetrafluoroethylene(TR-ePTFE) membrane. The rabbits were divided into four groups. Control group I used only TR-ePTFE membrane, control group II used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in saline, experimental group III and IV used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in 1% or 2% inorganic polyphosphate respectively. After decortication in the calvaria, GBR procedure was performed on 12 rabbits with titanium reinforced ePTFE membrane filled with deproteinized bovine bone mineral soaked in saline or inorganic polyphosphate. The animals were sacrificed at 2 weeks, 4 weeks, and 8 weeks after the surgery. Decalcified and non-decalcified specimens were processed for histologic and immunohistochemistric analysis. 1. Titanium reinforced ePTFE(TR-ePTFE) membrane showed good spacemaking and cell occlusiveness capability, but it showed poor wound stabilization. 2. The deproteinized bovine bone mineral did not promote bone regeneration, but it acted as a space filler. 3. There was no complete resorption of the deproteinized bovine bone mineral within 8 weeks. 4. 1% inorganic polyphosphate did not promote bone formation, but 2% inorganic polyphosphate promoted bone formation. Within the above results, 2% inorganic polyphosphate could be used effectively for bone regeneration.

성견의 치조 연상 임플란트주위 결손부에서의 탈회냉동건조골과 e-PTEE막의 효과 (The Effect of Demineralized Freeze - Dried Bone Allograft in Guided Bone Regeneration on Supra - Alveolar Peri - Implant Defects in Dogs)

  • 김창성;최성호;조규성
    • Journal of Periodontal and Implant Science
    • /
    • 제31권1호
    • /
    • pp.57-74
    • /
    • 2001
  • The purpose of this study was to evaluate the adjunctive combined effect of demineralized freeze-dried bone allograft(DFDB) in guided bone regeneration on supra-alveo-lar peri-implant defect. Supra-alveolar perio-implant defects, 3mm in height, each including 4 IMZ titanium plasma-sprayed implants were surgically created in two mongrel dogs. Subsequently, the defects were treated with 1 of the following 3 modalities: Control) no membrane or graft application, Group1) DFDB application, Group2) guided bone regeneration using an expanded polytetra-fluoroethylene membrane, Group3) guided bone regeneration using membrane and DFDB. After a healing period of 12-week, the animals were sacrificed, tissue blocks were harvested and prepared for histological analysis. Histologic examination were as follows; 1. New bon formation was minimal in control and Group 1, but considerable new bone formation was observed in Group 2 and Group 3. 2. There was no osteointegration at the implant-bone interface in the high-polished area of group2 and Group 3. 3. In fluorescent microscopic examination, remodeling of new bone was most active during week 4 and week 8. There was no significant difference in remodeling rate between group 2 and group 3. 4. DFDB particles were observed, invested in a connective tissue matrix. Osteoblast activity in the area was minimal. The results suggest that guided bone regeneration shows promising results in supra-alveolar peri-implant defects during the 12 week healing period although it has a limited potential in promoting alveolar bone regeneration in the high-polished area. There seems to be no significant adjunctive effect when DFDB is combined with GBR.

  • PDF