• 제목/요약/키워드: guanosine-5'-monophosphate

검색결과 74건 처리시간 0.022초

쥐를 이용한 포르말린 및 열 유발 통증에서 척수강 Sildenafil의 효과에 관한 연구 (Evaluation for the Effects of Intrathecal Sildenafil on the Formalin- and Thermal-induced Nocieption of Rats)

  • 윤명하;배홍범;신동진;김창모;정성태;김석재;최정일
    • The Korean Journal of Pain
    • /
    • 제19권1호
    • /
    • pp.17-21
    • /
    • 2006
  • Background: Cyclic guanosine monophosphate (cGMP) plays an important role in the modulation of nociception. Although local sildenafil produces antinociception, by increasing cGMP through the inhibition of phosphodiesterase 5, the effect of spinal sildenafil has not been determined. The authors evaluated the effects of intrathecal sildenafil on the nociceptive behavior evoked by formalin injection and thermal stimulation. Methods: Lumbar intrathecal catheters were implanted into rats, with formalin and Hot-Box tests used as nociceptive models. The formalin-induced nociceptive behavior (flinching response) and withdrawal latency to radiant heat were measured, and the general behaviors also observed. Results: The intrathecal administration of sildenafil produced dose-dependent suppression of the flinches in both phases in the formalin test, and increased the withdrawal latency in the Hot-Box test. No abnormal behaviors were noted. Conclusions: Sildenafil, an inhibitor of phosphodiesterase 5, is active against the nociceptive state evoked in the spinal cord by formalin and thermal stimulations. Accordingly, spinal sildenafil may be useful in the management of pain.

Activation of the cGMP/Protein Kinase G Pathway by Nitric Oxide Can Decrease TRPV1 Activity in Cultured Rat Dorsal Root Ganglion Neurons

  • Jin, Yun-Ju;Kim, Jun;Kwak, Ji-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권3호
    • /
    • pp.211-217
    • /
    • 2012
  • Recent studies have demonstrated that nitric oxide (NO) activates transient receptor potential vanilloid subtype 1 (TRPV1) via S-nitrosylation of the channel protein. NO also modulates various cellular functions via activation of the soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathway and the direct modification of proteins. Thus, in the present study, we investigated whether NO could indirectly modulate the activity of TRPV1 via a cGMP/PKG-dependent pathway in cultured rat dorsal root ganglion (DRG) neurons. NO donors, sodium nitroprusside (SNP) and S-nitro-N-acetylpenicillamine (SNAP), decreased capsaicin-evoked currents ($I_{cap}$). NO scavengers, hemoglobin and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), prevented the inhibitory effect of SNP on $I_{cap}$. Membrane-permeable cGMP analogs, 8-bromoguanosine 3', 5'-cyclic monophosphate (8bromo-cGMP) and 8-(4chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (8-pCPT-cGMP), and the guanylyl cyclase stimulator YC-1 mimicked the effect of SNP on $I_{cap}$. The PKG inhibitor KT5823 prevented the inhibition of $I_{cap}$ by SNP. These results suggest that NO can downregulate the function of TRPV1 through activation of the cGMP/PKG pathway in peripheral sensory neurons.

Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine

  • Hong, Noo Ri;Park, Hyun Soo;Ahn, Tae Seok;Kim, Hyun Jung;Ha, Ki-Tae;Kim, Byung Joo
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.314-321
    • /
    • 2015
  • Background: Ginseng belongs to the genus Panax. Its main active ingredients are the ginsenosides. Interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal (GI) tract. To understand the effects of ginsenoside Re (GRe) on GI motility, the authors investigated its effects on the pacemaker activity of ICCs of the murine small intestine. Methods: Interstitial cells of Cajal were dissociated from mouse small intestines by enzymatic digestion. The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICCs. Changes in cyclic guanosine monophosphate (cGMP) content induced by GRe were investigated. Results: Ginsenoside Re ($20-40{\mu}M$) decreased the amplitude and frequency of ICC pacemaker activity in a concentration-dependent manner. This action was blocked by guanosine 50-[${\beta}-thio$]diphosphate [a guanosine-5'-triphosphate (GTP)-binding protein inhibitor] and by glibenclamide [an adenosine triphosphate (ATP)-sensitive $K^{+}$ channel blocker]. To study the GRe-induced signaling pathway in ICCs, the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) and RP-8-CPT-cGMPS (a protein kinase G inhibitor) were examined. Both inhibitors blocked the inhibitory effect of GRe on ICC pacemaker activity. L-NG-nitroarginine methyl ester ($100{\mu}M$), which is a nonselective nitric oxide synthase (NOS) inhibitor, blocked the effects of GRe on ICC pacemaker activity and GRe-stimulated cGMP production in ICCs. Conclusion: In cultured murine ICCs, GRe inhibits the pacemaker activity of ICCs via the ATP-sensitive potassium ($K^{+}$) channel and the cGMP/NO-dependent pathway. Ginsenoside Re may be a basis for developing novel spasmolytic agents to prevent or alleviate GI motility dysfunction.

Streptomyces virginiae가 생산하는 Virginiae Butanolide C(VB-C) 결합단백질의 결합활성에 미치는 일반적 특성 (Characterization of the Binding Activity of Virginiae Butanolide C Binding Protein in Streptomyces virginiae)

  • 김현수
    • 한국미생물·생명공학회지
    • /
    • 제20권3호
    • /
    • pp.257-262
    • /
    • 1992
  • Streptomyces virginiae가 생산하는 virginimycin 생산 유도인자(virginiae butanolide C,VB-C) 결합 단백질의 ligand(VB-C)와의 결합활성에 미치는 일반적인 성질을 검토한 결과, 본 VB-C 결합단백질은 막성분을 제외한 세포질에 90% 이상 존재하며, 최적 pH는 7.0인 것으로 입증되었다. KCL 존재하 약 15%의 결합활성이 증대되었으며,$Mo^{6+}$ 이온 존재시 60%의 결합활성 저하를 보였다.

  • PDF

Inhibitory effects of isoscopoletin on thrombus formation via regulation of cyclic nucleotides in collagen-induced platelets

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • 제63권3호
    • /
    • pp.235-241
    • /
    • 2020
  • An essential component of the hemostatic process during vascular damage is platelet activation. However, many cardiovascular diseases, such as atherosclerosis, thrombosis, and myocardial infarction, can develop due to excessive platelet activation. Isoscopoletin, found primarily in plant roots of the genus Artemisia or Scopolia, has been studied to demonstrate potential pharmacological effects on Alzheimer's disease and anticancer, but its mechanisms and role in relation to thrombus formation and platelet aggregation have not yet been discovered. This research investigated the effect of isoscopoletin on collagen-induced human platelet activation. As a result, isoscopoletin strongly increased cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels in a concentration-dependent manner. In addition, isoscopoletin greatly phosphorylated inositol 1,4,5-triphosphate receptor (IP3R) and vasodilator-stimulated phosphoprotein (VASP), known substrates of cAMP-dependent kinase and cGMP dependent kinase. Phosphorylation of IP3R by isoscopoletin induced Ca2+ inhibition from the dense tubular system Ca2+ channels, and VASP phosphorylation was involved in fibrinogen binding inhibition by inactivating αIIb/β3 in the platelet membrane. Isoscopoletin finally reduced thrombin-induced fibrin clot production and finally reduced thrombus formation. Therefore, this research suggests that isoscopoletin has strong antiplatelet effects and is likely to be helpful for thrombotic diseases involving platelets by acting as a prophylactic and therapeutic agent.

U46619 유도의 혈소판에서 Cyclic Nucleotides 조절을 통한 Isoscopoletin의 혈전생성 억제효과 (Anti-thrombus Effects of Isoscopoletin by Regulating Cyclic Nucleotides on U46619-induced Platelets)

  • 이동하
    • 생약학회지
    • /
    • 제52권1호
    • /
    • pp.26-33
    • /
    • 2021
  • During blood vessel damage, an essential step in the hemostatic process is platelet activation. However, it is important to properly control platelet activation, as various cardiovascular diseases, such as stroke, atherosclerosis, and myocardial infarction, are also caused by excessive platelet activation. Found primarily in the roots of plants of the genus Artemisia or Scopolia, isoscopoletin has been studied to demonstrate its potential pharmacological effects against Alzheimer's disease and anticancer, but the mechanisms and roles involved in thrombus formation and platelet aggregation are insufficient. This study investigated the effect of isoscopoletin on U46619-induced human platelet activation. As a result, isoscopoletin significantly increased the levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) dose-dependently. In addition, isoscopoletin significantly phosphorylated inositol 1, 4, 5-triphosphate receptor (IP3R) and vasodilator-stimulated phosphprotein (VASP), which are known substrates for cAMP-dependent kinases and cGMP-dependent kinases. Phosphorylated IP3R by isoscopoletin inhibited Ca2+ mobilization from the dense tubular system Ca2+ channels to cytosol, and phosphorylated VASP was involved in the inhibition of fibrinogen binding through αIIb/β3 inactivation in the platelet membrane. Isoscopoletin finally reduced thrombin-induced fibrin clotting production. Therefore, this study suggests that isoscopoletin has a potent antiplatelet effect and may be helpful for platelet-related thrombotic diseases.

Ionic Dependence and Modulatory Factors of the Background Current Activated by Isoprenaline in Rabbit Ventricular Cells

  • Leem, Chae-Hun;Lee, Suk-Ho;So, In-Suk;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • 제26권1호
    • /
    • pp.15-25
    • /
    • 1992
  • In order to elucidate the properties of the background current whole cell patch clamp studies were performed in rabbit ventricular cells. Ramp pulses of ${\pm}80\;mV$ from holding potential of 40 mV(or 20 mV) at the speed of 0.8 V/sec were given every 30 sec(or 10 sec) and current-voltage diagrams(I-V curve) were obtained. For the activation of the background current isoprenaline, adenosine 3',5'-cyclic monophosphate(dBcAMP), guanosine 3',5'-cyclic monophosphate(cGMP), and $N^6$-2'-o-dibutyryladenosine 3',5'-cyclic monophosphate(dBcAMP) were applied after all known current systems were blocked with 2mM Ba, 1 mM Cd ,5 mM Ni, 10 ${\mu}M$ diltiazem, 10 ${\mu}m$ ouabain, and 20 mM tetraethylammonium(TEA). The conductance of background current in control was $0.65{\pm}0.69$ nS at 0 mV, its I-V curves was almost linear and reversed near 50 mV. When there was no taurine in pipette solution, isoprenaline hardly activated the background current but when taurine existed in pipette solution, isoprenaline activated the larger background current. Cyclic AMP or cyclic GMP alone had little effect on the activation of the background current, while cGMP potentiated cGMP effect. When the background current was activated with cGMP and cAMP, isoprenaline could not further increased the background current. The background current activated by isoprenaline depended on extracellular $Cl^-$ concentration and its reversal potential was shifted according to chloride equilibrium potential. The change of extracellular $Na+$ concentration had little effect on reversal potential of the background current activated by isoprenaline.

  • PDF

모과의 비휘발성 Flavor 성분에 관한 연구 (Nonvolatile Flavor Components in Chinese Quince Fruits, Chaenomeles sinensis koehne)

  • 정태영;조대선;송재철
    • 한국식품과학회지
    • /
    • 제20권3호
    • /
    • pp.293-302
    • /
    • 1988
  • 본 연구는 모과의 비휘발성 성분에 과한 조성을 규명하기 위한 기초 연구 과제로써 행하여졌다. 주요 비휘발성 성분은 유리 아미노산의 경우 valine, asparagin ${\gamma}-aminobutyric\;acid$, aspartic acid 와 serine 이 전체의 72%를 차지하고 arginine, tyrosine, methionine과 tryptophan은 거의 검출되지 않아다. Peptide 구성 아미노산으로는 주로 glutamic acid와 glutamine이었으며 cysteic acid, methione sulfone과 tryptophan은 검출되지 않았다. 핵산관련 물질의 분석 결과 cytosine, UMP, CMP는 소량 존재하셨으며 GMP, IMP, AMP는 검출되지 않았다. 당 분석결과 주성분은 glucose, sorbose, sucrose, fructose였으며 fructose 함량이 가장 높은 것으로 판명되었다. GC 및 GC-MS방법에 의해 총 11성분의 유기산이 동정 되었으며 이들중 tartaric acid및 ${\alpha}-ketoglutaric\;acid$가 주성분이었다. 정량된 총 비타민 C 함량은 386.6 mg%였으며 ascorbic-acid dehydroascorbic acid와 2,3-diketo-L-gulonic acid는 각각 28.8mg%, 154.5mg%, 197.3mg%였다. 무기성분으로는 칼슘과 인이 주요 성분으로 나타났으며 카드뮴, 구리, 납은 소량 존재하였다. 모과의 천연 및 합성 extract에 대한 관능검사의 결과 유리형, 아미노산, 당, 유기산, 비타민 C및 무기질의 맛의 주성분으로 판명되었다. 따라서 모과의 향미 성분 중 비휘발성 성분은 주로 상기 다섯 그룹에 의해서 나타남을 확인하였다.

  • PDF

Thrombus Formation Inhibition of Esculetin through Regulation of Cyclic Nucleotides on Collagen-Induced Platelets

  • Lee, Dong-Ha
    • 대한의생명과학회지
    • /
    • 제27권4호
    • /
    • pp.270-276
    • /
    • 2021
  • Physiological agents trigger a signaling process called "inside-out signaling" and activated platelets promote adhesion, granule release, and conformational changes of glycoprotein IIb/IIIa (αIIb/β3). Activated αIIb/β3 interacts with fibrinogen and initiates a second signaling step called "external signaling". These two signaling pathways can cause hemostasis or thrombosis, and thrombosis is a possible medical problem in arterial and venous vessels, and platelet-mediated thrombosis is a major cause of cardiovascular disease (CVD). Therefore, modulating platelet activity is important for platelet-mediated thrombosis and cardiovascular disease. Esculetin is a coumarin-based physiologically active 6,7-dihydroxy derivative known to have pharmacological activity against obesity, diabetes, renal failure and CVD. Although some studies have confirmed the effects of esculetin in human platelet activation and experimental mouse models, it is not clear how esculetin has antiplatelet and antithrombotic effects. We confirmed the effect and mechanism of action of escultein on human platelets induced by collagen. As a result, esculetin decreased Ca2+ recruitment through upregulation of inositol 1, 4, 5-triphosphate receptor. In addition, esculetin upregulates cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)-dependent pathways and inhibits fibrinogen binding and thrombus contraction. Our results demonstrate the antiplatelet effect and antithrombotic effect of esculetin in human platelets. Therefore, we suggest that esculetin could be a potential phytochemical for the prevention of thrombus-mediated CVD.

The significant influence of residual feed intake on flavor precursors and biomolecules in slow-growing Korat chicken meat

  • Poompramun, Chotima;Molee, Wittawat;Thumanu, Kanjana;Molee, Amonrat
    • Animal Bioscience
    • /
    • 제34권10호
    • /
    • pp.1684-1694
    • /
    • 2021
  • Objective: This study investigated the association between feed efficiency, physicochemical properties, flavor precursors and biomolecules in the thigh meat of Korat (KR) chickens. Methods: The feed intake and body weight of individual male KR chickens were recorded from 1 to 10 weeks old to calculate the individual residual feed intake (RFI) of 75 birds. At 10 weeks of age, chickens with the 10 highest (HRFI) and lowest RFI (LRFI) were slaughtered to provide thigh meat samples. The physicochemical properties (ultimate pH, water holding capacity [WHC], drip loss) and flavor precursors (guanosine monophosphate, inosine monophosphate (IMP), adenosine monophosphate and inosine) were analyzed conventionally, and Fourier transform infrared spectroscopy was used to identify the composition of biomolecules (lipids, ester lipids, amide I, amide II, amide III, and carbohydrates) and the secondary structure of the proteins. A group t-test was used to determine significant differences between mean values and principal component analysis to classify thigh meat samples into LRFI and HRFI KR chickens. Results: The physicochemical properties of thigh meat samples from LRFI and HRFI KR chickens were not significantly different but the IMP content, ratios of lipid, lipid ester, protein (amide I, amide II) were significantly different (p<0.05). The correlation loading results showed that the LRFI group was correlated with high ratios of lipids, lipid esters, collagen content (amide III) and beta sheet protein (rg loading >0.5) while the HRFI group was positively correlated with protein (amide I, amide II), alpha helix protein, IMP content, carbohydrate, ultimate pH and WHC (rg loading >0.5). Conclusion: The thigh meat from chickens with different RFI differed in physiochemical properties affecting meat texture, and in the contents of flavor precursors and biomolecules affecting the nutritional value of meat. This information can help animal breeders to make genetic improvements by taking more account of traits related to RFI.