• 제목/요약/키워드: growth-related trait

검색결과 56건 처리시간 0.021초

Genome-wide association study identifies 22 new loci for body dimension and body weight traits in a White Duroc×Erhualian F2 intercross population

  • Ji, Jiuxiu;Zhou, Lisheng;Guo, Yuanmei;Huang, Lusheng;Ma, Junwu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권8호
    • /
    • pp.1066-1073
    • /
    • 2017
  • Objective: Growth-related traits are important economic traits in the swine industry. However, the genetic mechanism of growth-related traits is little known. The aim of this study was to screen the candidate genes and molecular markers associated with body dimension and body weight traits in pigs. Methods: A genome-wide association study (GWAS) on body dimension and body weight traits was performed in a White $Duroc{\times}Erhualian$ $F_2$ intercross by the illumina PorcineSNP60K Beadchip. A mixed linear model was used to assess the association between single nucleotide polymorphisms (SNPs) and the phenotypes. Results: In total, 611 and 79 SNPs were identified significantly associated with body dimension traits and body weight respectively. All SNPs but 62 were located into 23 genomic regions (quantitative trait loci, QTLs) on 14 autosomal and X chromosomes in Sus scrofa Build 10.2 assembly. Out of the 23 QTLs with the suggestive significance level ($5{\times}10^{-4}$), three QTLs exceeded the genome-wide significance threshold ($1.15{\times}10^{-6}$). Except the one on Sus scrofa chromosome (SSC) 7 which was reported previously all the QTLs are novel. In addition, we identified 5 promising candidate genes, including cell division cycle 7 for abdominal circumference, pleiomorphic adenoma gene 1 and neuropeptides B/W receptor 1 for both body weight and cannon bone circumference on SSC4, phosphoenolpyruvate carboxykinase 1, and bone morphogenetic protein 7 for hip circumference on SSC17. Conclusion: The results have not only demonstrated a number of potential genes/loci associated with the growth-related traits in pigs, but also laid a foundation for studying the genes' role and further identifying causative variants underlying these loci.

Genetic Parameters for Growth-Related Traits in Korean Native Chicken

  • Cahyadi, Muhammad;Park, Hee-Bok;Seo, Dong-Won;Jin, Shil;Choi, Nuri;Heo, Kang-Nyeong;Kang, Bo-Seok;Jo, Cheorun;Lee, Jun-Heon
    • 한국가금학회지
    • /
    • 제42권4호
    • /
    • pp.285-289
    • /
    • 2015
  • Body and carcass weights are always being main focus in poultry industry. The aim of current study was to estimate the heritability, genetic and phenotypic correlations of growth-related traits in Korean native chicken. A total of 596 chickens representing five lines of Korean native chicken (Black, Gray-Brown, Red-Brown, White, and Yellow-Brown) were reared under the standard breeding procedures in the National Institute of Animal Science (NIAS), Korea. Their body weights were observed every two weeks from hatched to 20 weeks of age. In addition, shank length and carcass weight were also measured before and after slaughter, respectively. The ASReml-R program was used to compute genetic parameters. The body weight traits were moderate to high heritability values (ranged 0.29~0.63). The heritablilites of carcass weight ($h^2=0.20$) and shank length ($h^2=0.20$) were categorized as moderate. Moreover, both genetic and phenotypic correlations were ranged form 0.62 to 0.99 and ranged from 0.42 to 0.98, respectively. These findings can be useful information for quantitative genetic studies and breeding plan of Korean native chicken.

Identification of growth trait related genes in a Yorkshire purebred pig population by genome-wide association studies

  • Meng, Qingli;Wang, Kejun;Liu, Xiaolei;Zhou, Haishen;Xu, Li;Wang, Zhaojun;Fang, Meiying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권4호
    • /
    • pp.462-469
    • /
    • 2017
  • Objective: The aim of this study is to identify genomic regions or genes controlling growth traits in pigs. Methods: Using a panel of 54,148 single nucleotide polymorphisms (SNPs), we performed a genome-wide Association (GWA) study in 562 pure Yorshire pigs with four growth traits: average daily gain from 30 kg to 100 kg or 115 kg, and days to 100 kg or 115 kg. Fixed and random model Circulating Probability Unification method was used to identify the associations between 54,148 SNPs and these four traits. SNP annotations were performed through the Sus scrofa data set from Ensembl. Bioinformatics analysis, including gene ontology analysis, pathway analysis and network analysis, was used to identify the candidate genes. Results: We detected 6 significant and 12 suggestive SNPs, and identified 9 candidate genes in close proximity to them (suppressor of glucose by autophagy [SOGA1], R-Spondin 2 [RSPO2], mitogen activated protein kinase kinase 6 [MAP2K6], phospholipase C beta 1 [PLCB1], rho GTPASE activating protein 24 [ARHGAP24], cytoplasmic polyadenylation element binding protein 4 [CPEB4], GLI family zinc finger 2 [GLI2], neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adaptor 2 [NYAP2], and zinc finger protein multitype 2 [ZFPM2]). Gene ontology analysis and literature mining indicated that the candidate genes are involved in bone, muscle, fat, and lung development. Pathway analysis revealed that PLCB1 and MAP2K6 participate in the gonadotropin signaling pathway and suggests that these two genes contribute to growth at the onset of puberty. Conclusion: Our results provide new clues for understanding the genetic mechanisms underlying growth traits, and may help improve these traits in future breeding programs.

Relationships of Concentrations of Endocrine Factors at Antemortem and Postmortem Periods to Carcass Weight and Backfat Thickness in Pigs

  • Yun, J.S.;Seo, D.S.;Rhee, M.S.;Oh, S.;Kim, B.C.;Ko, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권3호
    • /
    • pp.335-341
    • /
    • 2003
  • Carcass weight and backfat thickness are two of important elements in determining the carcass trait in pigs and are studied on animal genetics, nutrition, and endocrinology. Growth factors stimulate or inhibit the proliferation and differentiation of various cells. In particular, insulin-like growth factors (IGFs), transforming growth factor (TGF)-$\beta$, and epidermal growth factor (EGF) are involved in the growth and maintenance of muscle. Also, dehydroepiandrosterone-sulfate (DHEA-S) and cortisol are known to be related to the obesity and subcutaneous fat depth in pigs. Therefore, this study was performed to relate growth factors (IGFs, TGF-${\beta}1$, and EGF) and hormones (cortisol and DHEA-S) concentrations at antemortem and postmortem periods to carcass traits including carcass weight and backfat thickness. Blood and m. Longissimus were collected in pigs at antemortem (30 days before slaughter) and postmortem periods. After slaughtered, carcass weight and backfat thickness were measured. Growth factors and hormones in serum and m. Longissimus were measured by radioimmunoassay or enzyme-linked imuunosorbent assay. Before antemortem period, serum IGF-I and -II concentrations were positively correlated with the carcass weight and backfat thickness in gilts, and the concentrations of TGF- ${\beta}1$ and cortisol in barrows show the correlation with only carcass weight. Also, the positive correlations of muscular IGFs and TGF-${\beta}1$ at postmortem 45 min with the carcass weight and backfat thickness were detected. Consequently, these results suggest that the serum and muscular endocrine factors are involved in the carcass weight and backfat thickness in pigs.

The variation of insulin like growth factor 2 maker is associated with growth traits in Thai native (Kradon) pigs

  • Kessara Ampaporn;Rattikan Suwannasing;Pitchayanipa Phongphanich;Supanon Tunim;Monchai Duangjinda
    • Animal Bioscience
    • /
    • 제36권9호
    • /
    • pp.1350-1356
    • /
    • 2023
  • Objective: This study was conducted to investigate polymorphisms of the melanocortin-4 receptor (MC4R) and insulin like growth factor 2 (IGF2) genes and to evaluate the growth traits affected by such polymorphisms in Thai native (Kradon) pigs. Methods: Blood samples and productive data from 91 Kradon pigs were collected. DNA was extracted and quantified, the IGF2 and MC4R genes were amplified, and the polymerase chain reaction (PCR) produces were digested using the PCR-restriction fragment length polymorphism (PCR-RFLP) technique. Genotyping was performed, and the association between genotypes and growth traits on the birth and weaning weights were evaluated. Results: The IGF2 intron7 g.162G>C variations in Kradon pigs were found in three genotypes: i) GG, ii) GC, and iii) CC. The GG genotype frequency was the highest followed by the GC and CC genotypes. The frequencies of the G and C alleles were 0.703 and 0.297, respectively. The MC4R genotype was found in only one genotype (GG). The IGF2 gene pattern was not associated with birth weight traits, whereas the IGF2 gene pattern was related to the weaning weight trait in Kradon pigs. Pigs with the CC and GC genotypes had higher weaning weights than ones with the GG genotype (p<0.001). Conclusion: Thai native Kradon pigs with the CC and GC genotypes of the IGF2 gene have higher weaning weights than pigs with the GG genotype.

Identification and functional prediction of long non-coding RNAs related to skeletal muscle development in Duroc pigs

  • Ma, Lixia;Qin, Ming;Zhang, Yulun;Xue, Hui;Li, Shiyin;Chen, Wei;Zeng, Yongqing
    • Animal Bioscience
    • /
    • 제35권10호
    • /
    • pp.1512-1523
    • /
    • 2022
  • Objective: The growth of pigs involves multiple regulatory mechanisms, and modern molecular breeding techniques can be used to understand the skeletal muscle growth and development to promote the selection process of pigs. This study aims to explore candidate lncRNAs and mRNAs related to skeletal muscle growth and development among Duroc pigs with different average daily gain (ADG). Methods: A total of 8 pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG). And followed by whole transcriptome sequencing to identify differentially expressed (DE) lncRNAs and mRNAs. Results: In RNA-seq, 703 DE mRNAs (263 up-regulated and 440 down-regulated) and 74 DE lncRNAs (45 up-regulated and 29 down-regulated) were identified. In addition, 1,418 Transcription factors (TFs) were found. Compared with mRNAs, lncRNAs had fewer exons, shorter transcript length and open reading frame length. DE mRNAs and DE lncRNAs can form 417 lncRNA-mRNA pairs (antisense, cis and trans). DE mRNAs and target genes of lncRNAs were enriched in cellular processes, biological regulation, and regulation of biological processes. In addition, quantitative trait locus (QTL) analysis was used to detect the functions of DE mRNAs and lncRNAs, the most of DE mRNAs and target genes of lncRNAs were enriched in QTLs related to growth traits and skeletal muscle development. In single-nucleotide polymorphism/insertion-deletion (SNP/INDEL) analysis, 1,081,182 SNP and 131,721 INDEL were found, and transition was more than transversion. Over 60% of percentage were skipped exon events among alternative splicing events. Conclusion: The results showed that different ADG among Duroc pigs with the same diet maybe due to the DE mRNAs and DE lncRNAs related to skeletal muscle growth and development.

A Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Blood Components (Immunity) in a Cross between Korean Native Pig and Yorkshire

  • Lee, Y.M.;Alam, M.;Choi, B.H.;Kim, K.S.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권12호
    • /
    • pp.1674-1680
    • /
    • 2012
  • The purpose of this study was to detect significant SNPs for blood components that were related to immunity using high single nucleotide polymorphism (SNP) density panels in a Korean native pig (KNP)${\times}$Yorkshire (YK) cross population. A reciprocal design of KNP${\times}$YK produced 249 $F_2$ individuals that were genotyped for a total of 46,865 available SNPs in the Illumina porcine 60K beadchip. To perform whole genome association analysis (WGA), phenotypes were regressed on each SNP under a simple linear regression model after adjustment for sex and slaughter age. To set up a significance threshold, 0.1% point-wise p value from F distribution was used for each SNP test. Among the significant SNPs for a trait, the best set of SNP markers were determined using a stepwise regression procedure with the rates of inclusion and exclusion of each SNP out of the model at 0.001 level. A total of 54 SNPs were detected; 10, 6, 4, 4, 5, 4, 5, 10, and 6 SNPs for neutrophil, lymphocyte, monocyte, eosinophil, basophil, atypical lymph, immuno-globulin, insulin, and insulin-like growth factor-I, respectively. Each set of significant SNPs per trait explained 24 to 42% of phenotypic variance. Several pleiotropic SNPs were detected on SSCs 4, 13, 14 and 15.

Changes in Photosynthetic Characteristics during Grain Filling of a Functional Stay-Green Rice SNUSG1 and its $F_1$ Hybrids

  • Fu, Jin-Dong;Lee, Byun-Woo
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.75-82
    • /
    • 2008
  • Functional stay-green is a beneficial trait that may increase grain yield through the sustained photosynthetic competence during monocarpic senescence in cereal crops. The temporal changes of photosynthesis and related characteristics throughout the grain filling period of a stay-green japonica rice "SNU-SG1" was compared in growth chamber conditions with three high-yielding cultivars(HYVs) and their $F_1$ hybrids with SNU-SG1. SNU-SG1 exhibited a typical characteristic of functional stay-green in terms of chlorophyll degradation and photosynthetic competence during grain filling. According to the photosynthesis-light response curve measured at 10 and 35 d after heading for the flag leaf, SNU-SG1 exhibited higher initial light conversion efficiency and thus higher gross photosynthetic rate at light saturation compared to HYVs. Light saturation point was not different among genotypes, ranging from 1000 to 1500 ${\mu}mol$ photon $m^{-2}s^{-1}$. Net photosynthetic rate at light saturation($P_{max}$) of the upper four leaves in SNU-SG1 was much higher and sustained longer throughout grain-filling than HYVs and $F_1$ hybrids. The sustained high photosynthetic competence of SNU-SG1 during grain filling was ascribed to the longer maintenance of high mesophyll conductance that resulted from not only high chlorophyll content and its delayed degradation but also the slow degeneration of photosystem II(PS II) as judged by chlorophyll fluorescence($F_v/F_m$) of flag leaves. $F_1$ hybrids showed slow degeneration of photosystem II similar to the male parent SNU-SG1 while chlorophyll degradation pattern close to female parents, thus exhibiting a little higher $P_{max}$ than female parents. These results suggest that SNU-SG1 has a typical functional stay-green trait that can be utilized for increasing rice yield potential through the improved dry matter production during grain filling.

  • PDF

토양수분구배에서 굴참나무와 떡갈나무의 생육반응, 생태 지위 및 중복역 (Growth Response, Ecological Niche and Overlap between Quercus variabilis and Quercus dentata under Soil Moisture Gradient)

  • 박여빈;김의주
    • 한국환경복원기술학회지
    • /
    • 제26권5호
    • /
    • pp.47-56
    • /
    • 2023
  • The Quercus variabilis and Quercus dentata, which are said to be relatively drought tolerant among the important genus Quercus that represent deciduous broad-leaved forests in Korea. These two species are widely distributed worldwide in Korea, Japan and China (northern, central, western and eastern subtropical regions). This study compared the ecological niche breadth and overlap according to growth response in 4 soil moisture gradients for the two species and tried to reveal degree of competition and ecological niche characteristics. The ecological niche breadth was 0.977±0.020 for Q. variabilis and 0.979±0.014 for Q. dentata, the latter being slightly wider. And they were similar in 5 traits (stem length, leaf lamina length, leaf width length, stem weight, leaf petiole weight), Q. variabilis was more dominant in 4 traits (leaves number, stem diameter, leaf area, leaf petiole length), and Q. dentata was more dominant in 7 traits (root length, shoot length, plant weight, root weight, shoot weight, leaf weight, leaf petiole weight). The ecological niche overlap for soil moisture between the two species overlapped most in plant structure-related traits and least in photosynthetic organ-related traits such as petiole length. As a result of principal component analysis, degree of competition between the two species for soil moisture was more severe when the soil moisture condition was low than high. Among the measured traits that affect the two-dimensional distribution, 8 traits (Leaves number, Shoot length, Stem length, Plant weight, Root weight, Shoot weight, Stem weight, Leaves weight) were correlated with the factor 1, and 2 traits (Leaf width length, Leaf petiole weight) were correlated with the factor 2 (r>0.5). These results show that the ecological response of the two species to soil moisture is not a few traits involved, but several traits are involved simultaneously.

Halotolerant Plant Growth Promoting Bacteria Mediated Salinity Stress Amelioration in Plants

  • Shin, Wansik;Siddikee, Md. Ashaduzzaman;Joe, Manoharan Melvin;Benson, Abitha;Kim, Kiyoon;Selvakumar, Gopal;Kang, Yeongyeong;Jeon, Seonyoung;Samaddar, Sandipan;Chatterjee, Poulami;Walitang, Denver;Chanratana, Mak;Sa, Tongmin
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.355-367
    • /
    • 2016
  • Soil salinization refers to the buildup of salts in soil to a level toxic to plants. The major factors that contribute to soil salinity are the quality, the amount and the type of irrigation water used. The presented review discusses the different sources and causes of soil salinity. The effect of soil salinity on biological processes of plants is also discussed in detail. This is followed by a debate on the influence of salt on the nutrient uptake and growth of plants. Salinity decreases the soil osmotic potential and hinders water uptake by the plants. Soil salinity affects the plants K uptake, which plays a critical role in plant metabolism due to the high concentration of soluble sodium ($Na^+$) ions. Visual symptoms that appear in the plants as a result of salinity include stunted plant growth, marginal leaf necrosis and fruit distortions. Different strategies to ameliorate salt stress globally include breeding of salt tolerant cultivars, irrigation to leach excessive salt to improve soil physical and chemical properties. As part of an ecofriendly means to alleviate salt stress and an increasing considerable attention on this area, the review then focuses on the different plant growth promoting bacteria (PGPB) mediated mechanisms with a special emphasis on ACC deaminase producing bacteria. The various strategies adopted by PGPB to alleviate various stresses in plants include the production of different osmolytes, stress related phytohormones and production of molecules related to stress signaling such as bacterial 1-aminocyclopropane-1-carboxylate (ACC) derivatives. The use of PGPB with ACC deaminase producing trait could be effective in promoting plant growth in agricultural areas affected by different stresses including salt stress. Finally, the review ends with a discussion on the various PGPB activities and the potentiality of facultative halophilic/halotolerant PGPB in alleviating salt stress.