• Title/Summary/Keyword: growth substrate

Search Result 2,450, Processing Time 0.025 seconds

Growth of GaN on ZnO Substrate by Hydride Vapor-Phase Epitaxy (ZnO 기판 위에 Hydride Vapor-Phase Epitaxy법에 의한 GaN의 성장)

  • Jo, Seong-Ryong;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.304-307
    • /
    • 2002
  • A zinc oxide (ZnO) single crystal was used as a substrate in the hydride vapor-phase epitaxy (HVPE) growth of GaN and the structural and optical properties of GaN layer were characterized by x- ray diffraction, transmission electron microscopy, secondary ion mass spectrometry, and photoluminescence (PL) analysis. Despite a good lattice match and an identical structure, ZnO is not an appropriate substrate for application of HVPE growth of GaN. Thick film could not be grown. The substrate reacted with process gases and Ga, being unstable at high temperatures. The crystallinity of ZnO substrate deteriorated seriously with growth time, and a thin alloy layer formed at the growth interface due to the reaction between ZnO and GaN. The PL from a GaN layer demonstrated the impurity contamination during growth possibly due to the out-diffusion from the substrate.

Effect of Recycled Coir Organic Substrates on Vegetable Crop Growth (코이어배지의 재활용이 채소 작물의 생육에 미치는 영향)

  • Lee, Gyu-Bin;Park, Eun-Ji;Park, Young-Hoon;Yeo, Kyung-Hwan;Rhee, Han-Cheol;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1077-1085
    • /
    • 2016
  • The present study was investigated the effect of recycled coir organic substrates on the growth of different vegetable crops. The recycled coir had better physical and chemical properties than the new coir. The growth of tomato plant was better on the coir substrate that had been used for 2 years than that on the new coir substrate. The average number of tomato fruits was 108 on the new coir substrate, while it was 179 and 165 on the coir substrate used for 1 and 2 years, respectively. The growth of cherry tomato plant was also better on the coir substrate used for 2 years than that on the new coir substrate. The average number of cherry tomato fruits was 43 on the new coir substrate, while it was 206 and 164 on the coir substrate used for 1 and 2 years, respectively. The growth of brussel sprout was better on the coir substrate used for 3 years than that on the new coir substrate and the average number of brussel sprout leaves was 26.8 on the new coir substrate, while it was 34.3 on the coir substrate used for 3 years. The growth of Korean cabbage improved on the coir substrate used for 1 years compared to the new coir substrate and the number of leaves was 15.1 on the new coir substrate, while it was 24.3 on the coir substrate used for 1 year. Thus, used coir can be recycled to improve vegetable yields compared to using new coirs.

Real-time Spectroscopic Ellipsometry studies of the Effect of Preparation Parameters on the Coalescence Characteristics of Microwave-PECVD Diamond Films

  • Hong, Byungyou
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.49-54
    • /
    • 1998
  • The growth of diamond films in plasma enhanced chemical vapor deposition(PECVD) processes requires high substrate temperatures and gas pressures, as well as high-power excitation of the gas source. Thus determining the substrate temperature in this severe environment is a challenge. The issue is a critical one since substrate temperature is a key parameter for understanding and optimizing diamond film growth. The precise Si substrate temperature calibration based on rapid-scanning spectroscopic ellipsometry have been developed and utilized. Using the true temperature of the top 200 ${\AA}$ of the Si substrate under diamond growth conditions, real time spectroellipsometry (RTSE) has been performed during the nucleation and growth of nanocrystallind thin films prepared by PECVD. RTSE shows that a significant volume fraction of nondiamond(or{{{{ {sp }^{2 } -bonded}}}}) carbon forms during thin film coalescence and is trapped near the substrate interface between ∼300 ${\AA}$ diamond nuclei.

  • PDF

Highly Oriented Textured Diamond Film on Si Substrate (Si 기판과 일정방향관계를 갖는 근사단결정 다이아몬드 박막 합성)

  • 백영준;은광용
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.457-463
    • /
    • 1994
  • The growth condition of highly oriented textured diamond film on a (100) Si substrate was investigated as a function of texture orientation. The growth process consisted of biased enhanced nucleation (BEN) and texture growth. The substrate was under the plasma of 6% CH4-94% H2 with negative bias of 200V during the BEN which grounded during the texture growth. The texture orintation changed from <100> to <110> by increasing substrate temperature. The nearly perfect match between textured diamond grains and the Si substrate could be obtained under the condition of <100> texture. The degree of tilt mismatch increased with the increase of deviation of texture orientation from <100>. The degree of twist mismatch appeared to increase abruptly beyond the critical deviation of texture orientation from <100> because the nuclei having the same orientation as the substrate were no more preferred grains for texture formation.

  • PDF

Structural and Field-emissive Properties of Carbon Nanotubes Produced by ICP-CVD: Effects of Substrate-Biasing (ICP-CVD 방법으로 성장된 탄소 나노튜브의 구조적 특성 및 전계방출 특성: 기판전압 인가 효과)

  • Park, C.K.;Kim, J.P.;Yun, S.J.;Park, J.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.132-138
    • /
    • 2007
  • Carbon nanotubes (CNTs) arc grown on Ni catalysts employing an inductively-coupled plasma chemical vapor deposition (ICP-CVD) method. The structural and field-emissive properties of the CNTs grown are characterized in terms of the substrate-bias applied. Characterization using the various techniques, such as field-omission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Auger spectroscopy (AES), and Raman spectroscopy, shows that the structural properties of the CNTs, including their physical dimensions and crystal qualities, as well as the nature of vertical growth, are strongly dependent upon the application of substrate bias during CNT growth. It is for the first time observed that the provailing growth mechanism of CNTs, which is either due to tip-driven growth or based-on-catalyst growth, may be influenced by substrate biasing. It is also seen that negatively substrate-biasing would promote the vertical-alignment of the CNTs grown, compared to positively substrate-biasing. However, the CNTs grown under the positively-biased condition display a higher electron-emission capability than those grown under the negatively-biased condition or without any bias applied.

Effect of substrate pretreatment on the growth yield enhancement and growth temperature decrease of carbon nanotubes (탄소나노튜브의 합성수율 증대와 저온 합성에 미치는 기판 전처리의 영향)

  • Shin, Eui-Chul;Jo, Sung-Il;Jeong, Goo-Hwan
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • Carbon nanotubes (CNT) on metal substrates are definitely beneficial because they can maintain robust mechanical stability and high conductivity between CNT and metal interfaces. Here, we report direct growth of CNT on Ni-based superalloy, Inconel 600, using thermal chemical vapor deposition (CVD) with acetylene feedstock in the growth temperature range of $400-725^{\circ}C$. Furthermore, we studied the effect of substrate pretreatment on the growth yield enhancement and growth temperature decrease of CNT on Inconel 600. Activation energy (AE) for CNT growth was estimated from the CNT height change with respect to the growth temperature. The AE values significantly decreased from 205.03 to 24.35 kJ/mol by the pretreatment of thermal oxidation of Inconel substrate at $725^{\circ}C$ under ambient. Higher oxidation temperature tends to have lower activation energy. The results have shown the importance of pretreatment temperature on CNT growth yield and growth temperature decrease.

Effect of Substrate on GaN Growth

  • Kim, Yootaek;Park, Chinho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.247-251
    • /
    • 1997
  • GaN films were grown on three differently oriented sapphire substates; (0001), (11-20), and (1-20). GaN films on the (0001) and (11-20) substates have a haxagonal structure and their growth rate was 0.6 $\mu\textrm{m}$/hr in both case. The film on the (1-102) substrate was too thin to identify its crystalline state. Growth rate was about the half of the others. Substrate orientation is one of the factor determining growth rate. The adhesion between GaN film and alumina substrate seems to be very good judging from the fractography.

  • PDF

Comparison of carbon nanotube growth mode on various substrate

  • I.K. Song;Y.S. Cho;Park, K.S.;Kim, D.J.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.44-44
    • /
    • 2003
  • Growth mechanism of carbon nanotubes(CNTs) synthesized by chemical vapor deposition is abided by two growth modes. These growth modes are classified by the position of activated catalytic metal particle in the CNTs. Growth mode can be also affected by interaction between substrate and catalytic metal and induced energy such as thermal and plasma. We studied the reaction of catalytic metal to the substrate and growth mode of CNTs. Various substrates such as Si(100), graphite plate, coming glass, sapphire and AAO membrane are used to study the relation between catalytic metal and substrate in the synthesis of CNTs. For catalytic metal, thin film was deposited on various substrate via sputtering technique with a thickness of ∼20nm and magnetic fluids with none-sized particles were dispersed on AAO membrane. After laying process on AAO membrane, it was dried at 80$^{\circ}C$ for 8 hour. Synthesizing of CNTs was carried out at 900$^{\circ}C$ in NH3/C2H2 mixture gases flow for 10minutes.

  • PDF

Pyrocarbon Whisker Growth on the Catalytic Mullite Substrate by the Pyrolysis of Methane

  • Rhee, Bosung;Park, Young-Tae
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.101-105
    • /
    • 2005
  • Like bamboo-sprouts after rains, numerous sub${\mu}m$-sized pyrocarbon whiskers growth on the Mullite ($3Al_2O_3{\cdot}2H_2O$) substrate could be observed through a looking glass during methane pyrolysis at the temperature of $1050^{\circ}C$ in this study. If the surface of substrate would be scrubbed strongly with iron metals, then finely sticked iron particles were more effective catalytic for nm-sized whisker growth. Numerous fine flakes of pyrolytic carbon were hanging by invisible nm-whiskers as like as small spiders hanging by a spiderweb. This is the identification of nm-sized whisker growth. Therefore if the pyrolysis would be stopped at the initial stage of the whisker growth, the primary lengthening growth was nm-sized whisker. So could we vary arbitrarily sizes of whisker from nm- to ${\mu}m$-sizes. But ${\mu}m$- and nm-whiskers grown with the different growth mechanism; the former was straight and the latter has twigs, The lengthening growth of whisker was depended on the flow pattern pyrolysis species on the active sites of substrate and on the growth duration. We could obtained straight whisker length of 10~20 ${\mu}m$/min during the primary growth and laboratory spiral whisker of 30~40 ${\mu}m$-diameter/hr during the secondary growth.

  • PDF

Different Growth Position of Iridium-catalyzed Carbon Nanofibers on the Substrate According to the Value of the Applied Bias Voltage

  • Kim, Sung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.25-29
    • /
    • 2006
  • Vertical growth of iridium-catalyzed carbon nanofibers could be selectively grown on the MgO substrate using microwave plasma-enhanced chemical vapor deposition method. Growth positions of the iridium-catalyzed carbon nanofibers on the MgO substrate could be manipulated according to the applied bias voltage. At-150 V, the carbon nanofibers growth was confined only at the corner area of the substrate. Based on these results, we discussed the cause for the confinement of the vertically grown carbon nanofibers on the specific area of the MgO substrate as a function of the applied bias voltage.