• Title/Summary/Keyword: growth strength

Search Result 1,674, Processing Time 0.032 seconds

The Influence of Atmostphere on High Temperature Crystal Growth

  • Klimm, D.;Schroder, W.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.51-67
    • /
    • 1999
  • The growth of crystals with high melting points tfus$\geq$1$600^{\circ}C$ faces the researcher with experimental problems, as the choice of materials that withstand such high t is rather limited. Many metallic construction materials are in this high t range already molten or exhibit at least a drastically reduced mechanical strength. The very few materials with tfus》1$600^{\circ}C$ as e.g. W, Mo, and partially even Ir are more or less sensitive against oxygen upon heating. Whenever possible, high t crystal growth is performed under inert atmosphere (noble gases). Unfortunately, any oxides are not thermodynamically stable under such conditions, as reduction takes place within such atmosphere. A thoroughly search for suitable growth conditions has to be performed, that are on the one side "oxidative enough" to keep the oxides stable and on the other side "reductive enough" to avoid destruction of constructive parts of the crystal growth assembly. The relevant parameters are t and the oxygen partial pressure pO2. The paper discusses quantitatively relevant properties of interesting oxides and construction materials and ways to forecast their behavior under growth conditions.r growth conditions.

  • PDF

Study on corrosion fatigue of high strength steel (고장력강의 부식피로에 관한 연구)

  • 유헌일;천기정;택목양삼
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.32-44
    • /
    • 1983
  • In case of $K_{Imax}$ < $K_{Iscc}$, the corrosion fatigue of high strength steel in 0.1N $H_{2}$S $O_{4}$ solution and 3.5% salt water is as follows. 1. The fatigue life shortens in order of 3.5% salt water and 0.1N $H_{2}$S $o_{4}$ solution. 2. The fatigue crack growth rate in air is obtained as the following equation. (dc/dN)$_{atr}$=7.23*10$^{-6}$ (.DELTA. K)$^{2.23}$ 3. The corrosion fatigue crack growth rate in environment is divided into three regions, that is, First Region, Second Region and Third Region from the small cyclic stress intensity. 4. The formation rate of the active surface on metal is slower than the mechano-chemical reaction rate in First Region. The crack growth rate depends on time and the cyclic stress intensity and is expressed as the following equation. (dc/dN)$_{I}$=C(/DELTA. K)$^{\delta}$ 5. The formation rate of the active surface is faster than the mechano-chemical reaction rate in Second Region and the synergistic effect by stress and corrosion becomes slow. In case the fatigue load is large, we have the critical crack growth rate which is not related to the cyclic stress intensity. 6. The corrosion crack growth rate by the mechano-chemical reaction is the same in $H_{2}$S $O_{4}$ solution and salt water, so Hydrogen accelerates the crack growth. 7. The environment has no effect on the corrosion fatigue crack growth rate in Third Region. 8. In First Region and Second Region, dimple is observed on the fatigue fracture surface in 0.1N $H_{2}$S $O_{4}$ solution. 9. The striation is observed in any environment as in air in Third Region and its interval approximately coincide with the crack growth rate.ate.e.e.

  • PDF

Mixed-mode fatigue crack growth behaviors in 5083-H115 aluminum alloy (5083-H115 알루미늄 합금의 혼합 모우드 피로 균열성장 특성)

  • 옹장우;진근찬;이성근;김종배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.461-471
    • /
    • 1989
  • For the mixed-mode crack problems the direction of crack growth, the crack path and the rational representation of fatigue crack growth rates should be studied to predict fatigue life and safety of structures. In this study, a round specimen which produce nearly identical effects in all loading directions is proposed to make an easy measurement of initial direction of crack growth. The mode I and mode II stress intensity factors of the specimen were calculated using finite element method, in which the square root singular stresses at the crack tip are modeled by means of four rectangular quarter-point eight-noded elements surrounding the crack tip. Experimental results for high strength aluminum alloy showed that the direction of mixed-mode crack growth agree well with maximum principal stress criterion as well as minimum strain energy density criterion, but not with maximum shear stress criterion. From data of fatigue crack growth rates using crack geometry projected on the line perpendicular to the loading direction it is easily established that mixed-mode fatigue crack growth in 5083-H115 aluminum alloy goes predominantly with mode I crack growth behaviors.

Effects of Nutrient Solution Strength and Arbuscular Mycorrhizal Fungi on Growth and Flowering of Potted Miniature Rose in Ebb and Flow System (저면관수 시스템에서 배양액 농도와 Arbuscular 균근균 처리가 분식 미니 장미의 생육 및 개화에 미치는 영향)

  • 이범선;이인호;지성희;손보균;조자용;강종구
    • Journal of Bio-Environment Control
    • /
    • v.13 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • Objective of this research was to evaluate the effects of nutrient solution strength and Arbuscular Mycorrhizal Fungi (AMF, Glomus sp.) on growth and flowering of potted miniature rose (Rosa hybrids L. cv 'Scarlet'). To achieve this, plants cultured with six different strength of Japanese Horticultural Experiment Station solution (0.125, 0.25, 0.5, 1.0, 2.0, and $4.0\;{\times}\;{full}$ strength) and inoculated with AMP at cutting and transplanting. Leachate EC increased as solution strength were elevated. The leachate EC were not different between non-inoculated plants and AMF treatment at cutting, but significantly decreased when plants were inoculated with AMF at transplanting. The elevated strength of nutrient solution resulted in decrease of leachate pH. When plants were inoculated AMF at transplanting, leachate pH was lower than those of non-inoculated plants and inoculated with AMF at cutting. At harvesting (93 days after transplanting), plant height, leaf width, number of branches and shoot fresh and dry weight of rose 'Scarlet' increased with elevated nutrient solution strength. AMF treatment at transplanting of potted rose 'Scarlet' showed the best results in growth such as chlorophyll content, number of flowers, and shortening the days required to flower. The content of N, P, K, and Mn in leaf tissue of potted rose increased by elevated nutrient solution strength and AMF treatment, while the tissue Na contents decreased by an AMF treatment.

The Fatigue Crack Growth Behavior of Concrete (콘크리트의 피로균열 성장거동에 관한 연구)

  • 김진근;김윤용
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.127-135
    • /
    • 1997
  • In this study, the wedge splitting tcst (WST) was carried out for the fatigue wack growth behavior of concrete. Selected test variables were concrete compressive strength of 28, 60 and 118 MI%, and stress ratio with 2 levels (6. 13%). In oder to make the designed stress ratio, the maximum and thr minimum fatigue loading level were 75-85% and 5- 10% of ultimate static load, respectively. Fatigue testing was preceded by crack mout.h opening displacement (CMOI)) compliance calibration tcst, and then the fatigue crack growth was computed by crack lcngth vs. (lMOI) compliance relations acquisited by the CMOD compliance calibration technique. To evaluate thc validity of CMOD compliancc calibration techniquc, the crack length p~mlicted by this method was cornpard with the crack length by linear elastic fracture mechanics(LEFIbl) and dyeing test. On the basis of the experimental results, a LRFhl-based c.mpirica1 model for f'at,igue crack growth rate(da/dN-AKI relationships) was presented. The fat,igut. crack growth ratc increased with the strength of concwtc. It appcars that t.he da/tiN-AKI relationships was influenced by stress ratio, however, the effect is diminished with an increase of strength. The comparisons between CblOl) compliance calibration technique anti the other. methods gave the validity of' ('MOD compliance calibration technique for the LZXT.

Estimation of the Characteristics of Delayed Failure and Long-term Strength of Granite by Brazilian Disc Test (압열인장시험을 이용한 화강암의 지연파괴특성 및 장기안정성 평가)

  • Jung, Yong-Bok;Cheon, Dae-Sung;Park, Eui-Seob;Park, Chan;Lee, Yun-Su;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2014
  • Long-term stability and delayed failure of granite were evaluated through the laboratory test based on Wilkins method and Brazilian disc test (BDT) which yields tensile strength, mode I fracture toughness and subcritical crack growth parameters. Then, the long-term strength of granite was estimated by using analytical models and long-term stability of compressed air-energy storage (CAES) pilot cavern pressurized up to 5 ~ 6 MPa was evaluated using numerical code, FRACOD with the determined subcritical crack growth parameters. The results of test and analyses showed that the subcritical crack growth index, n was determined as 29.39 and the inner pressure of 5 ~ 6 MPa had an insignificant effect on the long-term stability of pilot cavern. It was also found that the measurement and analysis of acoustic emission events can describe the accumulation of damage due to subcritical crack growth quantitatively. That is, AE monitoring can provide the current status of rock under loading if we make an identical installation condition in the field with that of the laboratory test.

Effects of Acid Fog Environment on the Corrosion Fatigue Strength of Structural Steel SM55C (기계구조용강 SM55C의 부식피로강도에 미치는 산성안개 분위기의 영향)

  • 김진학;김민건
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.181-187
    • /
    • 2000
  • Fatigue tests under acid fog environment were carried out to investigate the effect of acid fog on the corrosion fatigue strength of SM55C in comparison with distilled water. Main results obtained are as follows. The fatigue strength of SM55C under acid fog environment are remarkably decreased as compared with that of distilled water specimen. The corrosive effect of acid fog on fatigue strength are more serious under low stress amplitude level than under high stress amplitude level, and this leads to continuous reduction of fatigue strength. Under acid fog environment in early stage of crack growth. because the corrosive components dissolve the crack face offensively. the unstable fracture surface appears. But, the stable corrosion precipitation and products layer are formed on the fracture surface in accordance with the time pass.

  • PDF

Shear-Fatigue Behavior of High-Strength Reinforced Concrete Beams under Repeated Loading (반복하중을 받는 고강도 철근콘크리트 보의 전단피로 거동)

  • 곽계환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.92-103
    • /
    • 1999
  • Recently structural damage has been frequently observed in reinforced concrete brdiges due to repeated loads such as vehicular traffic an due to continual overloads by heavy duty trucks. Therefore, the purpose of this experimental stduy is to investigate the damage mechanism due to fatigue behavior of high-strength reinforced concrete beams under repeated loads. From the test results, the relation of cycle loading to deflection is on the mid-span , the crack growth and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results , high-strength reinforced concrete beams failed to 57 ∼66 percent of the static ultimate strength . Fatigue strength aobut two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

  • PDF

Effect of Multiple Circular Holes on Fatigue Crack Growth Path

  • Won, Young-Jun;Nishioka, Toshihisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • The mechanical fastening has some advantages in respect of the fastening strength and disassemble of the fastened parts. However, at the same time it has some dangerous factors, can cause fatigue crack initiation and propagation due to not only the static loading such as cargo and passengers but also the dynamic loading like vibrations which occur in the engines and the propellers. For this reason, the strength evaluation for the mechanical fastenings along with the sophisticated and detailed mechanical design and the safety evaluation should be executed, In this paper, we were carried out experiments to study fatigue crack growth paths in structures containing the multiple circular holes. It was investigated that how circular holes are affected on fatigue crack growth paths using the specimen consists of A5052-H112, which is widely used as the ship materials. It was found from the experimental results that the fatigue crack as if it is drawn to circular holes when crack tip approach to circular holes. However, it did not go into circular hole if there is the next circular hole. Therefore, the clarification of mechanism on the fatigue crack initiation and the propagation in structures containing the multiple circular holes can be expected in this study.

The Development Methods of Fatigue Strength Improvement for the Marine Structural Steel (해양구조용강의 피로강도향상 공법개발)

  • Park, Keyoung-Dong;Jung, Jae-Wook
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.106-111
    • /
    • 2003
  • This study made an experiment On fatigue crack propagation da/dn, stress intensity factor range ${\Delta}K$ respectively in room temperature and in low temperature. And we got the following characteristics from fatigue crack growth test carried Out in the environment of room temperature and law temperature at $25^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, and $-100^{\circ}C$ in the range of stress ratio of 0.3 by means of opening made displacement. The threshold stress intensity factor range ${\Delta}Kth$ in the early stage of fatigue crack growth (Mode I) and stress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Made II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at law temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF