• Title/Summary/Keyword: growth pH

Search Result 6,229, Processing Time 0.038 seconds

Effect of the particle size on the electrical contact in selective electro-deposition of copper (구리의 선택적 전착에서 결정 입자의 크기가 전기적 접촉성에 미치는 영향)

  • Hwang, Kyu-Ho;Lee, Kyung-Il;Joo, Seung-Ki;Kang, Tak
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.2
    • /
    • pp.79-93
    • /
    • 1991
  • With the advent of ULSI, many problems in previous metallization techniques and interconnection materials have become more serious. In this work, selective deposition of copper to fill the submicron contact has been tried. After forming electro-deposited copper films on p-type (100) silicon wafer using 0.75M $CuSO_4{\cdot}$5H_2O$ as an electrolyte, the effect of deposition time, current density and concentration of an additive on film properties were investigated. Film thickness, particle size and resistivity were analyzed by Alpha Step, SEM and 4 - point probe measurement respectively. The deposition rate was about $0.5-0.6\mu\textrm{m}$/min at $2A/dm^2$ and the particle size increased with increasing current density. The resistivities of electro-deposited copper films were about $3-6{\mu}{\Omega}{\cdot}$cm for the particle size above $4000{\AA}$. By the addition of 0.2 g/l gelatin, the particle size was reduced to less than $0.1{\mu}m $ and selective plugging of copper on submicron contacts could be successfully achieved.

  • PDF

Fabrication and characterization of ZrxCe1-xO2 catalytic powder by a hydrothermal process (수열합성공정에 의한 ZrxCe1-xO2 촉매 분말의 제조 및 특성)

  • Choi, Yeon-Bin;Son, Jeong-hun;Sohn, Jeong Ho;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.309-312
    • /
    • 2017
  • The ceria powder is excellent in oxygen storage capacity (OSC) through the oxidation and reduction reaction of Ce ions and is used as a typical material for a three-way catalyst of an automobile which purifies the exhaust gas. However, since ceria generally has poor thermal stability at high temperatures, it is doped with metal ions to improve thermal stability. Therefore, in this study, Zr ions were doped into ceria powder, and their characteristics were further improved due to the increase of specific surface area with decreasing particle size due to doping. In this study, the synthesis of zirconium doped ceria nanopowder was synthesized by hydrothermal process. In order to synthesis Zr ion doped ceria nanopowder, the precursor reaction at was $200^{\circ}C$ for 6 hours. The average particle size of synthesized Zr doped $CeO_2$ nanopowder was below 20 nm. The specific surface area of synthesized Zr ion doped ceria nanopowder increased from $52.03m^2/g$ to $132.27m^2/g$ with Zr increased 30 %.

Effect of Pre-partum Feeding of Crossbred Cows on Growth Performance, Metabolic Profile and Immune Status of Calves

  • Panigrahi, B.;Pandey, H.N.;Pattanaik, A.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.661-666
    • /
    • 2005
  • The effects of pre-partum feeding management in terms of birth weight, growth, metabolic profile and immunity of calves were studied using 24 crossbred (Bos taurus${\times}$Bos indicus) cows, divided into three equal groups. The dietary treatments included feeding of either 3.0 kg concentrate/head/d throughout the 60 d pre-partum (T$_1$), or 3.0 kg concentrate during 60-22 d pre-partum and thereafter at an increased allowance at 0.25 kg/d during the next 21 d till it reached 1% of live weight (T$_2$). The third group of cows was fed similar to T$_2$, except that the concentrate feeding during 60-22 d pre-partum was reduced to 2.0 kg (T$_3$). All the groups had access to ad libitum green fodder throughout. The results revealed that the mean daily dry matter (DM) intake by the cows was similar (p>0.05) among the three groups during the 60 days of the pre-partum but T2 animals tended to gain more live weight (41.25 kg) than T$_1$ (38.12 kg) and T$_3$ (36.25 kg). The body condition score of the cows did not change appreciably over the experimental period. The mean birth weight of the calves was 24.00${\pm}$1.10, 24.63${\pm}$1.17 and 23.25${\pm}$1.19 kg for the three groups, respectively, with the corresponding average daily gain of 154.2, 155.0 and 169.7 g during the subsequent 60 days; both these parameters did not vary significantly ascribable to prepartum feeding regimens of their dams. The total immunoglobulin (Ig) concentration in the colostrum was 6.31${\pm}$0.34, 5.80${\pm}$0.21 and 6.13${\pm}$0.30 g/dl for the three groups, respectively, showing no influence of dietary treatments. The mean serum Ig levels (T$_1$ 2.10${\pm}$0.09, T$_2$ 2.05${\pm}$0.09 and T$_3$ 2.10${\pm}$0.12 g/dl) of calves at 5 d of age were similar among the dietary groups as was the case with various serum biochemical constituents. It is concluded that the variations in pre-partum dietary management elicited no significant influence on the calf performance including the immune status.

Culture Conditions for Glucoamylase Production and Ethanol Productivity of Heterologous Transformant of Saccharomyces cerevisiae by Glucoamylase Gene of Saccharomyces diastaticus (Transformant의 Glucoamylase 생성조건과 Ethanol 발효성)

  • Kim, Young-Ho;Jung-Hwn Seu
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.494-498
    • /
    • 1988
  • The optimum conditions for glucoamylase production, and ethanol productivity of the transformant TSD-14 were investigated as compared with the parental strains. The properties of TSD-14 were comparatively similar to the donor S. diastaticus IFO 1046 as regards the conditions of glucoamylase production and ethanol productivity. The soluble starch was the most effective carbon source for the glucoamylase production. While inorganic nitrogen sources did not prompt cell growth and enzyme production, the organic nitrogen sources generally enhanced both cell growth and glucoamylase production. The metal salts such as FeSO$_4$, MgSO$_4$, MnCl$_2$, and NiSO$_4$were favorable to the enzyme production. And the optium temperature and initial pH for glucoamylase production were 3$0^{\circ}C$ and 5. The transformant TSD-14 produced 8.3%(v/v) ethanol from 15% sucrose medium, 4.8%(v/v) ethanol from 15% soluble starch medium, and 7.5%(v/v) ethanol from 15% liquefied potato starch medium. The corresponding fermentation efficiency were 84% , 45% and 70%, respectively.

  • PDF

In-situ Synchrotron Radiation Photoemission Spectroscopy Study of Property Variation of Ta2O5 Film during the Atomic Layer Deposition

  • Lee, Seung Youb;Jeon, Cheolho;Kim, Seok Hwan;Lee, Jouhahn;Yun, Hyung Joong;Park, Soo Jeong;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.362-362
    • /
    • 2014
  • Atomic layer deposition (ALD) can be regarded as a special variation of the chemical vapor deposition method for reducing film thickness. ALD is based on sequential self-limiting reactions from the gas phase to produce thin films and over-layers in the nanometer scale with perfect conformality and process controllability. These characteristics make ALD an important film deposition technique for nanoelectronics. Tantalum pentoxide ($Ta_2O_5$) has a number of applications in optics and electronics due to its superior properties, such as thermal and chemical stability, high refractive index (>2.0), low absorption in near-UV to IR regions, and high-k. In particular, the dielectric constant of amorphous $Ta_2O_5$ is typically close to 25. Accordingly, $Ta_2O_5$ has been extensively studied in various electronics such as metal oxide semiconductor field-effect transistors (FET), organic FET, dynamic random access memories (RAM), resistance RAM, etc. In this experiment, the variations of chemical and interfacial state during the growth of $Ta_2O_5$ films on the Si substrate by ALD was investigated using in-situ synchrotron radiation photoemission spectroscopy. A newly synthesized liquid precursor $Ta(N^tBu)(dmamp)_2$ Me was used as the metal precursor, with Ar as a purging gas and $H_2O$ as the oxidant source. The core-level spectra of Si 2p, Ta 4f, and O 1s revealed that Ta suboxide and Si dioxide were formed at the initial stages of $Ta_2O_5$ growth. However, the Ta suboxide states almost disappeared as the ALD cycles progressed. Consequently, the $Ta^{5+}$ state, which corresponds with the stoichiometric $Ta_2O_5$, only appeared after 4.0 cycles. Additionally, tantalum silicide was not detected at the interfacial states between $Ta_2O_5$ and Si. The measured valence band offset value between $Ta_2O_5$ and the Si substrate was 3.08 eV after 2.5 cycles.

  • PDF

Analysis of Growth Characteristics and Physiological Disorder of Korean Ginseng Affected by Application of Manure in Paddy-Converted Field (축분퇴비 시용 수준에 따른 논전환밭 인삼의 생육특성 및 생리장해 분석)

  • Jang, In Bae;Hyun, Dong Yun;Lee, Sung Woo;Kim, Young Chang;Kim, Jang Uk;Park, Gi Chun;Bang, Kyong Hwan;Kim, Gi Hong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.380-387
    • /
    • 2013
  • This study was carried out to investigate the difference of the content of soil chemical components and growth characteristics in five years old ginseng affected by application of manure in paddy-converted field. As all livestock manure regardless of kinds increased along with the whole soil chemical component, including the pH and EC in 2008. Change in the EC of control plot was slightly increased but not exceeded 1 ds/m over the years. However, the changes in the EC of livestock manure regardless of kinds and amounts were highly increased and irregularly exceeded 1.5 ds/m in 2012. The 5 years old ginseng root fresh weight, treatment of fertilizing pig manure compost 4 ton per 10 areas (PMC 4t on/10a) and fowl manure compost 4 ton per 10 areas (FMC 4 ton/10a), were superior to the others. But there were no difference between PMC 4 ton/10a, FMC 4 ton/10a and control. The standing crop rate 39.6%, treatment of fertilizing cattle manure compost 4 ton per 10 areas (CMC 4 ton/10a), was best in all livestock manure. However that was relatively lower than control. Physiological disorder occurrence rates of livestock manure related with leaf and root of ginseng were also higher than that of control. If excessively using non-decomposed livestock manure, It would be caused physiological disorder in many ways. It is a big problem to be producing the quality ginseng. More research is needed to find out the economic and effective fertilizer.

Allelopathic Effect of Sorghum Extract and Residues on Selected Crops and Weeds (수수의 타감작용(他感作用)에 관(關)한 연구(硏究))

  • Kim, S.Y.;De Datta, S.K.;Robles, R.P.;Kim, K.U.;Lee, S.C.;Shin, D.H.
    • Korean Journal of Weed Science
    • /
    • v.14 no.1
    • /
    • pp.34-41
    • /
    • 1994
  • To better understand the allelopathic effect of sorghum(Sorghum vulgare L.), the inhibitory activities of water extracts of the stem, leaf and root, and of residues of the stem to major crops and weeds associated with them were evaluated. The allelopathic activity of sorghum plants was species specific, and depended on source and concentration. Germination, and shoot and root length of all test species were inhibited by the different concentrations of the stem extract. Among the crop species, radish showed the most inhibition, followed by wheat and rice. Maize was the least sensitive species. Of the weed species, Ipomoea triloba was most inhibited, followed by Echinochloa colona and Rottboellia cochinchinensis. The water extracts of leaves, stems, and roots significantly inhibited germination and seedling growth in E. colona and radish. The stem extract gave the greatest inhibitory effect on E. colona while all three extracts produced similar response in radish. In the greenhouse trial, sorghum stem residue placed on the soil surface as mulch significantly inhibited seedling growth in E. colona and radish, but not that in rice.

  • PDF

Preparation of $Gal^3Man_4(6^3-mono-{\alpha}-D-galacto-pyranosyl-{\beta}-mannotetraose)$ by Bacillus sp. ${\beta}-mannanase$ and Growth Activity to Intestinal Bacteria (Bacillus sp.유래 ${\beta}-mannanase$에 의한 $Gal^3Man_4(6^3-mono-{\alpha}-D-galacto-pyranosyl-{\beta}-mannotetraose)$ 조제 및 장내세균에 대한 생육활성)

  • Kim, Sang-Woo;Park, Gwi-Gun
    • Applied Biological Chemistry
    • /
    • v.47 no.4
    • /
    • pp.379-383
    • /
    • 2004
  • For the elucidation of substrate specificity to the brown copra meal by Bacillus sp. ${\beta}-mannanase.$, the enzymatic hydrolysate after 24 hr of reaction was heated in a boiling water bath for 10 min, and then centrifuged to remove the insoluble materials from hydrolysates. The major hydrolysates composed of D.P 5 and 7 galactosyl mannooligosaccharides. For the separate of galactosyl mannooligosaccharides, the supernatant solution of 150 ml was put on a first activated carbon column. The column was then washed with 5 l of water to remove mannose and salts. The oligosaccharides in the column were eluted by a liner gradient of $0{\sim}30%$ ethanol, at the flow rate of 250 ml per hour. The sugar composition in each fraction tubes was examined by TLC and FACE analysis. The combined fraction from F3 was concentrated to 30 ml by vacuum evaporator. Then put on a second activated carbon column. The oligosaccharides in the column were eluted by a liner gradient of $0{\sim}30%$ ethanol (total volume: 5 l), at the flow rate of 250 ml per hour. The eluent was collected in 8 ml fraction tubes, and the total sugar concentration was measured by method of phenol-sulfuric acid. The major component of F2 separated by 2nd activated carbon column chromatography were identified $Gal^3Man_4(6^3-mono-{\alpha}-D-galactopyranosyl-{\beta}-mannotetraose)$. To investigate the effects of brown copra meal galactomannooligosaccharides on growth of Bifidobacterium longum, B. bifidum were cultivated individually on the modified-MRS medium containing carbon source such as $Gal^3Man_4$, compared to those of standard MRS medium.

One-step Separation of 30K Protein from the Silkworm Hemolymph by Anion-exchange Chromatography and Its Effect on the Proliferation of Human Cells (음이온교환 크로마토그래피를 이용한 누에체액 유래 30K 단백질의 정제와 정제된 단백질이 인간세포 배양 증식에 미치는 영향)

  • Shin Hyun-Chong;Joung Chan-Hi;Choi Yong-Soo;Lim Sang-Min;Han Kyuboem;Koo Yoon-Mo;Park Tai Hyun;Kim Dong-Il
    • KSBB Journal
    • /
    • v.20 no.3
    • /
    • pp.233-237
    • /
    • 2005
  • In order to investigate the feasibility of 30K protein from silkworm (Bombyx mori) hemolymph (SH) on the proliferation of human cells, a simple separating procedure by anion-exchange chromatography system with Q-Sepharose fast flow gel was established. The 30K protein was eluted with an optimized condition of 0.16 M sodium chloride in 20 mM tris buffer (pH 9.0). The separated 30K protein at three concentrations of 0.04, 0.12, and 0.4 mg/ml was added to the culture medium with various human cells, such as chondrocytes, periosteum-derived cells, and MRC-5 cells, and their growth rates were measured. The cell growth rate at protein concentration of 0.4 mg/ml was always higher than that without 30K protein in all human cells tested, suggesting that the 30K protein has positive effect on the increase of the life span of human cells.

Quorum-Sensing Mechanisms in Bacterial Communities and Their Potential Applications (세균의 의사 소통(Quorum-Sensing) 기구와 그 잠재적 응용성)

  • Yoon, Sung-Sik
    • Food Science of Animal Resources
    • /
    • v.26 no.3
    • /
    • pp.402-409
    • /
    • 2006
  • Although microorganisms are, in fact, the most diverse and abundant type of organism on Earth, the ecological functions of microbial populations remains poorly understood. A variety of bacteria including marine Vibrios encounter numerous ecological challenges, such as UV light, predation, competition, and seasonal variations in seawater including pH, salinity, nutrient levels, temperature and so forth. In order to survive and proliferate under variable conditions, they have to develop elaborate means of communication to meet the challenges to which they are exposed. In bacteria, a range of biological functions have recently been found to be regulated by a population density-dependent cell-cell signaling mechanism known as quorum-sensing (QS). In other words, bacterial cells sense population density by monitoring the presence of self-produced extracellular autoinducers (AI). N-acylhomoserine lactone (AHL)-dependent quorum-sensing was first discovered in two luminescent marine bacteria, Vibrio fischeri and Vibrio harveyi. The LuxI/R system of V. fischeriis the paradigm of Gram-negative quorum-sensing systems. At high population density, the accumulated signalstrigger the expression of target genes and thereby initiate a new set of biological activities. Several QS systems have been identified so far. Among them, an AHL-dependent QS system has been found to control biofilm formation in several bacterial species, including Pseudomonas aeruginosa, Aeromonas hydrophila, Burkholderia cepacia, and Serratia liquefaciens. Bacterial biofilm is a structured community of bacterial cells enclosed in a self-produced polymeric matrix that adheres to an inert or living surface. Extracellular signal molecules have been implicated in biofilm formation. Agrobacterium tumefaciens strain NT1(traR, tra::lacZ749) and Chromobacterium violaceum strain CV026 are used as biosensors to detect AHL signals. Quorum sensing in lactic acid bacteria involves peptides that are directly sensed by membrane-located histidine kinases, after which the signal is transmitted to an intracellular regulator. In the nisin autoregulation process in Lactococcus lactis, the NisK protein acts as the sensor for nisin, and NisR protein as the response regulator activatingthe transcription of target genes. For control over growth and survival in bacterial communities, various strategies need to be developed by which receptors of the signal molecules are interfered with or the synthesis and release of the molecules is controlled. However, much is still unknown about the metabolic processes involved in such signal transduction and whether or not various foods and food ingredients may affect communication between spoilage or pathogenic bacteria. In five to ten years, we will be able to discover new signal molecules, some of which may have applications in food preservation to inhibit the growth of pathogens on foods.