• Title/Summary/Keyword: growth pH

Search Result 6,235, Processing Time 0.038 seconds

An Artificial Neural Network for Biomass Estimation from Automatic pH Control Signal

  • Hur, Won;Chung, Yoon-Keun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.351-356
    • /
    • 2006
  • This study developed an artificial neural network (ANN) to estimate the growth of microorganisms during a fermentation process. The ANN relies solely on the cumulative consumption of alkali and the buffer capacity, which were measured on-line from the on/off control signal and pH values through automatic pH control. The two input variables were monitored on-line from a series of different batch cultivations and used to train the ANN to estimate biomass. The ANN was refined by optimizing the network structure and by adopting various algorithms for its training. The software estimator successfully generated growth profiles that showed good agreement with the measured biomass of separate batch cultures carried out between at 25 and $35^{\circ}C$.

Effect of Panax ginseng on the Growth and Production of Aflatoxin by Aspergillus flayus (인삼이 Aspergillus flayus의 생육 및 Aflatoxin 생성에 미치는 영향)

  • 이창숙;김종규
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.4
    • /
    • pp.90-97
    • /
    • 1994
  • This study was performed to investigate the effect of the Panax ginseng C. A. Meyer on the growth and production of aflatoxin by Aspergillus flayus ATCC 15517. Asp. fiavus with 10$^6$ conidia was incubated at 30$\circ$C for 7 days on YES broth containing 0.1%, 0.5%, and 1.0% of ginseng extract. After incubation, dry mycelial weight, pH, and production of aflatoxin were investigated. The results were as follows:There was no significant difference in dry mycelial weight by the addition of 0.1% and 0.5% ginseng extract. However, it was decreased to the rate of 13.7% by the addition of 1.0% ginseng extract in 7 days. pH changes in cultures were similar regardless of the concentration of ginseng extract. The pH values decreased to minimum in 5 days and again increased. Aflatoxin production was reduced as the concentration of ginseng extract increased. When compared to the control, the production of total aflatoxin significantly reduced to 56.7%, 54.0%, 53.3% in the media of 0.1%, 0.5% and 1.0% of ginseng extract, respectively. No significant difference was observed among ginseng extract groups.

  • PDF

Cultural characterization of probiotic Lactobacillus sakei BK19

  • Yang , Byung Gyoo;Song , Choon Bok;Yeo , In Kyu;Lee , Kyoung Jun;Park , Geun Tae;Lee, Sang Hyeon;Son, Hong Joo;Heo, Moon Soo
    • Journal of fish pathology
    • /
    • v.16 no.2
    • /
    • pp.119-123
    • /
    • 2003
  • We have selected an valuable pmbiotic strain; Lactobacillus sakei BK19 which has wide antagonic spectrum against fish pathogens . Present study investigated cultural characterization of L. sakei BK19 including pH tolerance , susceptibility of antibacterial agents and growth pattern with different environment such as nutritions, temperature and salinity. L. sakei BK19 showed Significantly higher resistance at low pH(around pH 4) environment and relative high antibiotic tolerance . In the study of optimal culture condition, maltose and saccharose provided the optimal nutritional culture condition while lactose and mannitol were unable to supply its carbon source for the fermentation of L. sakei BK19. Moreover. L. sakei BK19 showed good growth at the temperature range of 15 to $45^{o}C$ und the NaCl concentration of 0 to 7%. Hence, this particular probiotic strain may be benificial both in seawater and fresh weter conditions.

Biodegradation of Phenol by a Trichloroethylene-cometabolizing Bacterium

  • Park, Geun-Tae;Son, Hong-Joo;Kim, Jong-Goo;Lee, Sang-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.61-66
    • /
    • 1998
  • A microorganism which degrades phenol and co-metabolizes trichloroethylene (TCE) was isolated from Yangsan stream after enrichment in a medium containing phenol as the sole carbon source. The isolate EL-43P was identified as the genus Rhodococcus by its morphological, cultural and physiological characteristics. Phenol-induced cells of Rhodococcus sp. EL-43P degraded TCE. Toluene and nutrient broth could not replace the phenol requirement. The optimal conditions of initial pH and temperature of media for growth were 7.0~9.0 and $30~50^{\circ}C$, respectively. Rhodococcus sp. EL-43P could grow with phenol up to 1,000 ppm. Growth was inhibited by phenol at a concentration above 1,500 ppm. It was observed that Rhodococcus sp. EL-43P was able to degrade 90% of phenol (1,000 ppm) after 40 h in a culture. Phenol-induced cells of Rhodococcus sp. EL-43P degraded 95% of $5{\mu}M$ TCE in 6 h. Rhodococcus sp. EL-43P hardly degraded TCE above $100{\mu}M$.

  • PDF

Synthesis of zinc oxide nanoparticles via aqueous solution routes (수용액 합성법에 의한 ZnO 나노분말의 합성)

  • Koo, Jin Heui;Yang, Jun Seok;Cho, Soo Jin;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.175-180
    • /
    • 2016
  • ZnO nanoparticles were synthesized by aqueous preparation routes of a precipitation and a hydrothermal process. In the processes, the powders were formed by mixing aqueous solutions of Zn-nitrate hexahydrate ($Zn(NO_3)_2{\cdot}6H_2O$) with NaOH aqueous solution under controlled reaction conditions such as Zn precursor concentration, reaction pH and temperature. Single ZnO phase has been obtained under low Zn precursor concentration, high reaction pH and high temperature. The synthesized particles exhibited flakes (plates), multipods or rods morphologies and the crystallite sizes and shapes would be efficiently controllable by changing the processing parameters. The hydrothermal method showed advantageous features over the precipitation process, allowing the precipitates of single ZnO phase with higher crystallinity at relatively low temperatures below $100^{\circ}C$ under a wider pH range for the Zn precursor concentration of 0.1~1 M.

Inhibitory Effect of Radish on Gastric Cell Toxicity and Interleukin-8 Production Induced by Helicobacter pylori (Helicobacter pylori에 의한 위세포독성 및 interleukin-8 생성에 미치는 무의 억제효과)

  • Shon Yun Hee;Suh Jeong Ill;Park In Kyung;Hwang Cher Won;Kim Cheorl Ho;Nam Kyung Soo
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.595-599
    • /
    • 2005
  • The efforts of Korean and Japanese radishes on the viability and interleukin (JL)-8 production by Helicobacter pylori were investigated in human gastric epithelial cell. Cell viability was significantly decreased when they were incubated with H. pylori toxin (p <0.05, p<0.01 and p<0.005). Co-incubation with Korean or Japanese radish increased H. pylori toxin-inhibited cell growth in a concentration-dependent manner. The production of IL-8 was greatly increased in H. pylori-infected gastric epithelial cell in concentration- and time-dependent manners. The increased production of IL-8 was significantly inhibited by Korean (p<0.05 and p<0.01) or Japanese (p<0.05) radishes $(5\~10mg/ml)$. These results indicate that Korean and Japanese radishes have protective effects on H. pylori-inhibited cell growth and H. pylori-induced gastric mucosal cell inflammation by suppressing the production of inflammatory cytokine (IL-8) from gastric epithelial cell.

Effects of Supplemental Liquid DL-methionine Hydroxy Analog Free Acid in Diet on Growth Performance and Gastrointestinal Functions of Piglets

  • Kaewtapee, C.;Krutthai, N.;Bunchasak, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1166-1172
    • /
    • 2016
  • This study was conducted to determine the effect of dietary supplementation of liquid DL-methionine hydroxy analog free acid (DL-MHA) on growth performance and gastrointestinal conditions of piglets. One hundred and eighty crossbred barrow piglets (Large White${\times}$Landrace, body weight: $12.48{\pm}0.33kg$) were divided into three groups with ten replications of six piglets each. Piglets received DL-MHA in diet at a concentration of 0 (control group), 0.15%, or 0.24%. The results indicated that increasing the standardized ileal digestible (SID) of sulfur amino acids (SAA) to lysine (SID SAA:Lys) ratio by supplementation of DL-MHA tended to increase (quadratic; p<0.10) weight gain and ADG, and showed slightly greater (linear; p<0.10) gain:feed ratio. The pH in the diet and cecum linearly decreased (p<0.01), whereas pH in colon had a quadratic response (p<0.01) with increasing supplementation of DL-MHA. By greater supplementation of DL-MHA, the population of Lactobacillus spp. in rectum was likely to increase (quadratic; p<0.10), but Escherichia coli population in the diet was reduced (quadratic; p<0.05). Acetic acid concentration and total short-chain fatty acids in cecum linearly increased (p<0.05), whereas valeric acid in cecum quadratically increased (p<0.05) with increasing DL-MHA levels. Moreover, the villous height of the jejunum quadratically increased (p<0.01) as the supplementation of DL-MHA was increased. It is concluded that the addition of DL-MHA in diet improved the growth performance and the morphology of gastrointestinal tract of piglets.

Chinese Medicine Granule Affects the Absorption and Transport of Glucose in Porcine Small Intestinal Brush Border Membrane Vesicles under Heat Stress

  • Song, Xiaozhen;Xu, Jianqin;Wang, Tian;Liu, Fenghua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.246-253
    • /
    • 2009
  • This study was conducted to investigate the effects of Chinese medicine granule (CMG, including Cortex Phellodendron, Atractylodes Rhizome, Agastache Rugosa and Gypsum Fibrosum) on absorption and transport of glucose in porcine small intestinal brush border membrane vesicles (BBMVs) under heat stress. Forty-eight 2-month-old Chinese experimental barrows were screened according to weight and litter origin, and then allotted to three groups and treated as follows: Normal temperature control group (NTCG; $23^{\circ}C$), high temperature control group (HTCG; $26^{\circ}C$ for 19 h, $40^{\circ}C$ for 5 h); Chinese medicine granule anti-stress group (CMGG; $26^{\circ}C$ for 19 h, $40^{\circ}C$ for 5 h) (n = 16 per group). The results showed that high temperature treatment decreased (p<0.05) the growth performance and intestinal glucose absorption but there was no change (p>0.05) in the expression of SGLT1 and GLUT2 genes in the small intestine of pigs compared with the NTCG. Dietary supplementation with CMG improved the growth performance, and increased the activity of disaccharidases in duodenum and jejunum of heat stressed pigs (p<0.05). CMG treatment increased (p<0.05) the protein levels of SGLT1 and GLUT2 in the small intestine, and up-regulated (p<0.05) the expression of SGLT1 and GLUT2 genes in the duodenum and jejunum but without changing (p>0.05) them in the ileum compared with the HTCG. These results indicated that CMG treatment significantly improved porcine growth performance, and increased intestinal glucose absorption and transport by BBMVs under heat stress, in addition to up-regulating the expression of SGLT1 and GLUT2 genes in porcine duodenum and jejunum.

Effects of Environmental Factors on Growth and Nitrogen Fixation Activity of Kummerowia striata (매듭풀의 생육과 질소고정 활성에 미치는 환경요인의 영향)

  • Song, Seung-Dal;Jung-Sook Park;In-Sook Kim
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.43-54
    • /
    • 1995
  • Effects of environmental factors of N, P, pH, moisture, temperature and oxygen on growth and nitrogen fixation activity of kummerowia striate (Thunb.) Schindler seedling, bearing symbiotic root nodules, were quantitatively analyzed during the growing period. The specific nitrogenase activity (ARA) of nodules showed the maximum value of 187 μmol C₂H₄g fr wt-1 h-1 6 weeks after seeds were germinated. The total nitrogenase activities per plant attained as 1.56, 0.85, 0.09 and 4.0, 1.11, 0.04 μmol C₂H₄hr-1, respectively for the treatments of 1, 3 and 5 mM NO₃ ̄and NH₄+ on the 60th day. While the plant grown in N-free media for 20 days after treatments of 5 mM NH₄+for 40 days resulted in 30 mg fr wt of nodule formation and exhibited the relative activities of 152% and 162% for total and specific ARA in comparison with those of control plant grown with N-free for 60 days. Total biomass and ARA was by 70% and 86% lower in N and P deficiency, respectively. The N and P deficient plot showed 70% and 86% decreases of total biomass and ARA in comparison with those of control. The plant grown with N-free for 20 days after pretreatment with N and P free media for 40 days showed the relative values of 77%, 118% and 150%, respectively for nodule biomass, total and specific ARA in comparison with those of control. The treatment with acid or alkali gradients resulted in significant decreases of nodule biomass and ARA. The optimum temperature and pO₂for ARA were 30°C and 40 kPa, respectively. Two peaks of diurnal variation appeared at 11:00 and 23:00 o'clocks by the continuous light condition. The plants with water stress by temporary wilting point rsulted in 95~97% inhibition for nodule respiration, transpiration and specific ARA. Transpiration and ARA ware recovered to 88% and 38% of those of water unstressed plants, respectively, 6 hours after the plants were rewatered from water stressed condition.

  • PDF

Exopolysaccharide Production and Mycelial Growth in an Air-Lift Bioreactor Using Fomitopsis pinicola

  • Choi, Du-Bok;Maeng, Jeung-Moo;Ding, Ji-Lu;Cha, Wol-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1369-1378
    • /
    • 2007
  • For effective exopolysaccharide production and mycelial growth by a liquid culture of Fomitopsis pinicola in an air-lift bioreactor, the culture temperature, pH, carbon source, nitrogen source, and mineral source were initially investigated in a flask. The optimal temperature and pH for mycelial growth and exopolysaccharide production were $25^{\circ}C$ and 6.0, respectively. Among the various carbon sources tested, glucose was found to be the most suitable carbon source. In particular, the maximum mycelial growth and exopolysaccharide production were achieved in 4% glucose. The best nitrogen sources were yeast extract and malt extract. The optimal concentrations of yeast extract and malt extract were 0.5 and 0.1%, respectively. $K_2HPO_4\;and\;MgSO_4{\cdot}7H_2O$ were found to be the best mineral sources for mycelial growth and exopolysaccharide production. In order to investigate the effect of aeration on mycelial growth and exopolysaccharide production in an air-lift bioreactor, various aerations were tested for 8 days. The maximum mycelial growth and exopolysaccharide production were 7.9 g/l and 2.6 g/l, respectively, at 1.5 vvm of aeration. In addition, a batch culture in an air-lift bioreactor was carried out for 11 days under the optimal conditions. The maximum mycelial growth was 10.4 g/l, which was approximately 1.7-fold higher than that of basal medium. The exopolysaccharide production was increased with increased culture time. The maximum concentration of exopolysaccharide was 4.4 g/l, which was about 3.3-fold higher than that of basal medium. These results indicate that exopolysaccharide production increased in parallel with the growth of mycelium, and also show that product formation is associated with mycelial growth. The developed model in an air-lift bioreactor showed good agreement with experimental data and simulated results on mycelial growth and exopolysaccharide production in the culture of F. pinicola.