• Title/Summary/Keyword: growth pH

Search Result 6,235, Processing Time 0.038 seconds

Sporulation of Cercospora capsici causing Cercospora leaf spot of Pepper (고추 갈색점무늬병원균 (Cercospora capsici)의 배양특성과 다량 포자형성법)

  • Lim Yang-Sook;Kim, Byung-Soo
    • Research in Plant Disease
    • /
    • v.9 no.3
    • /
    • pp.162-165
    • /
    • 2003
  • High sporulation method and cultural characteristics of Cercospora capsici causing Cercospora leaf spot of pepper were examined. Optimum temperature for mycelial growth of Cercospora capsici was $25^{\circ}C$. The fungus did not grow below $5^{\circ}C$ and over $35^{\circ}C$. Optimum pH for mycelial growth was pH 4.0~pH 8.0. Mycelial growth was not influenced by light. C. capsici sporulated well on pepper leaf agar (5g/l). A standard method of sporulation established was as follows. The mycelial plugs were ground with some water in motar with pestle. The mycelial suspension was smeared on the surface of medium and incubated for 2~3 days at $20^{\circ}C$. The culture surface was lightly scraped with a brush after adding 1 ml of sterile water to stimulate sporulation and further incubated for 2~3 days.

Studies on the Utilization of Phenolic Substance by Yeast (효모에 의한 phenol 성 물질의 자화에 관한 연구)

  • 김상달;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.4
    • /
    • pp.155-159
    • /
    • 1978
  • Phenol utilizing yeast No. 558 isolated from soil sewage sediment was able to use substantial amount of phenol as the sole carbon source, and the biomass productivity by this organism was very excellent. This organism could grow well in 1000 ppm of phenol concentration, the maxim-um specific growth rate obtainable at pH 5.0, 3$0^{\circ}C$ was 0.27/hr., and the biomass yield coefficient Y vs. consumed phenol was 3.2. Maximum production rate of biomass was observed at 35$^{\circ}C$, pH 3.5 to pH 4.5, and the addition of the 0.005~0. 01% yeast extract was the most effective. Addition of HgCl$_2$ and phenyl hydrazine, inhibitors of oxide-reductase, in the phenol containing cultural liquid caused this organism no-growth at the concentration of 10$^{-5}$ M, 10$^{-3}$ M respectively. This organism could utilize not only phenol but catechol, resorcinol and benzidine.

  • PDF

Studies on Cultural Characteristics for High Density Fermentation of Phellinus linteus WI-001 (Phellinus linteus WI-001 균사체의 고밀도 배양을 위한 배양학적 특성 연구)

  • 김종래;권호균;전계택;김규중;이계관
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.2
    • /
    • pp.105-110
    • /
    • 2000
  • Various environmental factors such as pH, temperature and initial glucose concentration were investigated for enhancing cell growth in fermentations of Phellinus linteus WI-OOl, a producer of polysaccarides with potent anticancer activities. Optimal pH and temperature were around 5.5 and $28^{\circ}C$, respectively. Relatively little variation of pH was observed ranging between 5.5 and 6.5 during the whole fermentation period. Maximum cell concentration and specific growth rate were investigated in the media containing initial glucose concentrations of 0.5%, 1 %, 2%, 3% and 4%. High initial glucose concentration enhanced biomass production but showed negative effect on specific growth rate. In bioreactor experiments with various feeding strategies, increases of 28% and 42% in final cell concentration were obtaind as compared to conventional batch process, by adopting pulse and continuous supplement of 2% glucose solution, respectively.

  • PDF

Studies on the morphological and physiological characteristics of isolated strains from rotting ginseng (인삼부패곰팡이의 형태 및 생리학적 특성에 관한 연구)

  • 정동곤;박길동;하승수;주현주
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.391-397
    • /
    • 1986
  • Three kinds of microoganisms were isolated and identified from the ginseng and ginseng products to research the properties of the molds which spoil the ginseng and ginseng products. The results obtained were as follows: (1) The predominant strains on ginseng products were Aspergillus sp., Penicillium sp.-A and Penicillium sp.-B. These predominant fungi deteriorated ginseng products exclusively, (2) Aspergillus sp. showed the greatest mycelial growth at $40^{\circ}C$ and its optimum pH was 5, meanwhile Pencillium sp. showed the greatest mycelial growth at $30^{\circ}C$ and its optimum pH was 3. (3) The growth of the isolated strains was stimulated with the increase in the concentration of saponin at the lower concentration, meanwhile it was inhibited at 1.0% concentration of saponin.

  • PDF

Effects of Yeast Extract and Growth Characteristics of Lactobacillus helveticus ATCC 55163 in MRS and Whey Broth (MRS 및 유청 배지에서 Lactobacillus helveticus ATCC 55163의 생육 특성과 효모 추출물의 영향)

  • Yun, Mi-Suk
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.352-357
    • /
    • 2006
  • In this study, the growth characteristics of Lactobacillus helveticus ATCC 55163 were evaluated. The species was cultured in three different types of broths which included the MRS broth, 6%, 12% whey broth, and 6%, 12% whey broth containing 1% yeast extract, respectively. Exponential phase of Lactobacillus helveticus ATCC 55163 was within the range of 3 to 24 hours in the MRS broth and whey broth. The pH value of the whey broth dramatically decreased within the range of 3 to 24 hours. On the contrary, the total titratible acidity(TTA) of whey broth dramatically increased within the same range. During the same time, the lowest pH was showed in the 12% whey broth containing 1% yeast extract, and the highest TTA was showed in the same whey broth. Therefore, the concentration of whey broth and the yeast extract affected the multiplication of the Lactobacillus helveticus ATCC 55163 seriously through the research.

Fermentation of Red Ginseng using CKDHC 0801 and CKDHC 0802 (CKDHC 0801과 CKDHC 0802 균주를 이용한 홍삼발효)

  • Shin, Yong-Seo
    • Korean journal of food and cookery science
    • /
    • v.26 no.4
    • /
    • pp.469-474
    • /
    • 2010
  • In this study, we isolated two species of bacteria for the powerful biotrasnformation of ginsenosides from Kimchi and human feces. Using biochemical tests and 16s rRNA sequencing, the selected strains were identified as Latobacillusplantarum (CKDHC0801) and Lactobacillussakei (CKDHC0802). Changes in cell growth and pH were examined in red ginseng. CKDHC 0801 and CKDHC 0802 reached their maximum growth phase after 24 hr and 48 hr, respectively, whereas the combined culture of CKDHC 0801 and CKDHC 0802 showed higher cell growth than bacterial strain alone. During fermentation of CKDHC 0801 and the combined culture, the pH values decreased from 5.2 to 4.2 after 24 hr, but CKDHC 0802 reached pH of 4.2 after 3day. The identities of ginsenosides were biotransferred from high molecular (Rg1 and Rb2) to low molecular (Rg3, Rg5, Rk1, PPD) by fermentation of both bacteria. Therefore, the results of this study demonstrate that CKDHC 0801 and CKDHC 0802 could be used to enhance to effects of red ginseng.

Species Specificity Evaluation for Wastewater Treatment Application of Alkaliphilic Microalgae Arthrospira platensis (호염기성 미세조류 Arthrospira platensis의 폐수처리 적용을 위한 종특이성 평가)

  • Su-Hyeon, Lee;Jae-Hee, Huh;Sun-Jin, Hwang
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.282-291
    • /
    • 2022
  • Since the efficiency of wastewater treatment using microalgae differs depending on the metabolic characteristics of the species, it is important to understand the characteristics of target algae prior to the application in wastewater treatment. In this study, for the application of Arthrospira platensis to wastewater treatment, which is a filamentous alkaliphilic cyanobacteria, basic species specificity was identified and the possibility of application to wastewater treatment was investigated. As a result of the species specificity investigation, the specific growth rate between pH 7.0 and 11.0 showed the highest value near pH 9 at 0.25/day. The reason for the relatively low growth(0.08/day) at pH 11 was thought to be the CA(carbonic anhydrase) enzyme that is involved in carbon fixation during photosynthesis has the highest activity at pH 8.0 to 9.0, and at pH 11, CA activity was relatively low. In addition, A. platensis showed optimal growth at 400 PPFD(photosynthetic photon flux density) and 30℃, and this means that cyanobacteria such as A. platensis have a larger number of PS-I(photosystem I) than that of PS-II(photosystem II). It was speculated that it was because higher light intensity and temperature were required to sufficiently generate electrons to transfer to PS-I. Regarding the applicability of A. platensis, it was suggested that if a system using the synergistic effect of co-culture of A. platensis and bacteria was developed, a more efficient system would be possible. And different from single cocci, filamentous A. platensis expected to have a positive impact on harvesting, which is very important in the latter part of the wastewater treatment process.

In vitro Fermentation of Rumen Microorganisms Cultured in Medium Supplemented with Bacterio-mineral Water (BMW) Produced from Bio-reacted Swine Manure

  • Kim, Chang-Hyun;Park, Joong Kook;Lee, Gi Yeong;Seo, In Joon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1435-1439
    • /
    • 2005
  • Bacterio-mineral water (BMW) produced from manure has been known to exert a number of positive effects on animal production and odor control. An experiment was conducted to examine the effects of BMW produced from bio-reacted swine manure on in vitro gas production, cellulose degradation, microbial growth and fibrolytic enzyme activities of mixed rumen microorganisms. The five levels of 0, 0.001, 0.005, 0.01 and 1.0% BMW were supplemented into serum vials containing mixed rumen microorganisms. Incubations were carried out anaerobically at $39^{\circ}C$ without shaking for 0, 12, 24, 48, 72 and 96 h. There were no significant (p>0.05) differences among the treatments for the initial rate of gas production. At 72 h incubation, the gas production tended (p<0.1) to be increased by the 0.01 and 1.0% BMW treatments compared with control and the 0.001% BMW treatment. At the end of incubation (96 h), the sample supplemented with 0.01% BMW was higher (p<0.05) than control (0% BMW) in the gas production. The microbial growth rate was increased by all the BMW treatments, while 0.01% BMW was most effective in stimulating the growth rate. Although the addition of BMW on the filter paper DM degradation was not significantly influenced throughout the incubation period except the 48 h incubation, DM degradation tended to be increased by all BMW treatments compared with control. The addition of both 0.005 and 0.01% BMW highly increased (p<0.05) CMCase activity compared with control after 24 h and 48 h incubation, while at the 72 h incubation the 0.01% BMW addition only significantly increased (p<0.05). After 72 h incubation, the xylanase activity was significantly (p<0.05) increased with the addition of 1.0% BMW compared with the addition of 0.001 and 0.005% BMW, while at the other incubation times, the xylanase activity was not different among the treatments. In conclusion, the 0.01% BMW of supplementation level would be the suitable addition level to stimulate rumen fermentation increasing microbial growth and cellulose degradation.

Effects of Amylase and Cellulase Supplementation in Sorghum-based Diets for Finishing Pigs

  • Park, J.S.;Kim, I.H.;Hancock, J.D.;Hines, R.H.;Cobb, C.;Cao, H.;Hong, J.W.;Kwon, O.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 2003
  • Three experiments were conducted to determine the effects of a sorghum-specific enzyme system, derived from an Aspergillus niger and Bacillus subtilis fermentation extract (carbohydrase activity of 1,650 $\alpha$-amylase units and cellulase activity of 30 fibrinolytic units/mL), on growth performance of finishing pigs. In Exp. 1,192 pigs (average initial BW of 46.1 kg) were fed sorghum-based diets without or with 360 mL of enzyme system per ton of sorghum in a 78 d growth assay. For d 0 to 39, gain/feed was improved (p<0.03) with enzyme supplementation, but ADG was not affected (p>0.15). For d 39 to 78 and overall (d 0 to 78), ADG, gain/feed, and digestibilities of DM and N were not affected (p>0.13) by enzyme supplementation. Backfat thickness, fat-free lean index, and scores for stomach keratinization and ulcers also were not affected (p>0.15) by the dietary treatments. In Exp. 2,168 pigs (average initial BW of 58.4 kg) were fed diets without or with 150, 300, or 450 mL/ton of the same enzyme system used in Exp. 1. Adding as much as 450 mL enzyme system / ton of sorghum did not affect (p>0.15) ADG or gain/feed for d 0 to 29 of the growth assay. However, during d 29 to 63, ADG increased by 11% (linear effect, p<0.02) and gain/feed increased by 10% (linear effect, p<0.06) as enzyme concentration was increased from none to 450 mL/ton of sorghum. For the overall period (d 0 to 63), ADG tended to increase (p<0.08) with enzyme supplementation, but gain/feed and digestibilities of DM and N were not affected (p>0.14). Carcass characteristics (dressing percentage, backfat thickness, and fat free lean index) also were not affected (p>0.20) by addition of the enzyme system. In Exp. 3,176 pigs (average initial BW of 46.7 kg) were fed diets without or with 450, 900, or 1,350 mL/ton of the same enzyme system used in Exp. 1 and 2 in a 71 d growth assay. Adding up to 1,350 mL/ton of enzyme had no effects (p>0.15) on ADG, gain/feed, digestibilities of DM and N, and carcass characteristics (dressing percentage, backfat thickness, and fat-free lean index). In conclusion, finishing pigs fed diets with a sorghum-specific enzyme system showed some positive trends for improved growth performance, but those effects were not large and (or) consistent.

Clinical Effects of Intake of Juice Valley and Gogu Valley toward Fecal Microflora of Healthy Human Volunteers

  • Lee, Hoi-Seon
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.540-542
    • /
    • 2005
  • Juice Valley and Gogu Valley were administered to twelve healthy young volunteers for 4 weeks to study their clinical effects on human intestinal microflora. Changes in fecal microflora, fecal moisture, and fecal pH were observed for Juice Valley intake. Administration of Juice Valley significantly increased numbers of Bifidobacterium and Lactobacillus from 8.69 and 7.02 to 10.89 and 9.02 (Log CFU/g wet feces), respectively, whereas those of Clostridium perfringens and Escherichia coli decreased. Moisture content of feces increased, and fecal pH decreased after 4 weeks of Juice Valley intake, intake of Gogu Valley slightly increased growth responses of Bifidobacterium and Lactobacillus and decreased growth responses of C. perfringens and E. coli. Su-mi potato, as a reference, had no effect on Bifidobacterium and Lactobacillus numbers. This study confirmed Juice Valley has better effects than Gogu Valley and Su-mi, and has important role on growth promotion and inhibition of human intestinal bacteria.