• Title/Summary/Keyword: growth hormone receptor

Search Result 122, Processing Time 0.022 seconds

Mechanism of Growth Hormone Action : Recent Developments - A Review

  • Sodhi, R.;Rajput, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1785-1793
    • /
    • 2001
  • The interaction of growth hormone with it's receptor results in dimerization of receptor, a feature known in action of certain cytokines. The interaction results in generation of number of signalling molecules. The involvement of Janus kinases, mitogen activated kinases, signal transduction and activator of transcription proteins, insulin like substrate, phosphatidylinositol 3-kinase, phospholipase C, protein kinase C is almost established in growth hormone action. There are still many missing links in explaining diversified activities of growth hormone. Amino acid sequence data for growth hormones and growth hormone receptors from a number of species have proved useful in understanding species specific effects of growth hormone. Complete understanding of growth hormone action can have implications in designing drugs for obtaining desired effects of growth hormone.

Studies on the Production of Transgenic Rabbits with Growth Hormone Receptor and IGF-1 Receptor Genes (성장관련 유전자를 이용한 형질전환토끼의 생산에 관한 연구)

  • 김현주;강회성;최화식;임경순;진동일
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Transgenic rabbits were produced by DNA microinjection using growth hormone receptor (GHR) and IGF-1 receptor (IGF-1R) genes fused to metallothionein(MT) promoter. The overall efficiencies for production of transgenic rabbits were 3.2% and 3.1% for GHR and IGF-lR genes, respectively. Founder rabbits transmitted transgenes to their progenies through medelian fashion. Growth rate of GHR and IGF-lR transgenic rabbits was significantly faster than that of non-transgenic rabbits. Transgenic rabbits grew large. (25% and 15% increase in body weight of GHR and IGF-lR transgenic rabbits, respectively) than non-transgenic rabbits and organ weight of transgenic rabbits increased, suggesting that GHR and IGF-1R genes affects growth rates in transgenic rabbits.

Porcine growth hormone induces the nuclear localization of porcine growth hormone receptor in vivo

  • Lan, Hainan;Liu, Huilin;Hong, Pan;Li, Ruonan;Zheng, Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.499-504
    • /
    • 2018
  • Objective: Recent studies have challenged the traditional paradigm that growth hormone receptor (GHR) displays physiological functions only in the cell membrane. It has been demonstrated that GHR localizes to the cell nucleus and still exhibits important physiological roles. The phenomenon of nuclear localization of growth hormone (GH)-induced GHR has previously been described in vitro. However, until recently, whether GH could induce nuclear localization of GHR in vivo was unclear. Methods: In the present study, we used pig as an animal model, and porcine growth hormone (pGH) or saline was injected into the inferior vena cava. We subsequently observed the localization of porcine growth hormone receptor (pGHR) using multiple techniques, including, immunoprecipitation and Western-blotting, indirect immunofluorescence assay and electronmicroscopy. Results: The results showed that pGH could induce nuclear localization of pGHR. Taken together, the results of the present study provided the first demonstration that pGHR was translocated to cell nuclei under pGH stimulation in vivo. Conclusion: Nuclear localization of pGHR induced by the in vivo pGH treatment suggests new functions and/or novel roles of nuclear pGHR, which deserve further study.

Enhancement of Growth Performance in Transgenic Rabbits with Overexpressing Growth Hormone Receptor and IGF-1 Receptor Genes

  • Chang, Suk-Min;Kim, Hyun-Ju;Kim, Jin-Young;Park, Wha-Sik;Im, Kyung-Soon;Dong IL Jin
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.95-95
    • /
    • 2002
  • Transgenic rabbits were produced by micoinjection of DNA containing metallothionein promoter ligated to growth hormone receptor (GHR) and IGF-l receptor (IGF-lR) genes. Founder transgenic rabbits transmitted transgenes into pups with Medelian ratio. The mRNA expression of transgenes using Northern blotting with probes of IGF-IR and GHR genes was checked in liver of transgenic rabbits. Transgenic rabbits with IGF-IR and GHR genes more expressed mRNA than control non-transgneic rabbits. (omitted)

  • PDF

Efficacy Tests of Recombinant Human Growth Hormone Produced from Saccharomyces cerevisiae

  • Park, Soon-Jae;Kim, Nam-Joong;Kwon, Soon-Chang;Lee, Seung-Joo;Cho, Joong-Myung
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.437-442
    • /
    • 1995
  • The potency of yeast-derived methionyl-free human growth hormone (rhGH), which was obtained by removal of the N-terminal Met from methionyl-hGH, was estimated by in vitro and in vivo assays. In radio-receptor assay where the binding affinity of growth hormone to the receptor was estimated, the recombinant hGH showed 2.9 international units (IU) per mg of specific activity. In contrast, pitUitary-derived human growth hormone had a slightly lower receptor binding activity (2.5 IU/mg) compared with recombinant growth hormone. For the in vivo assay, efficacy of rhGH was tested by use of hypophysectomized rats, in which pituitary organs were surgically removed, resulting in the termination of growth hormone secretion. The weight-increase in rats by the injection of rhGH was almost identical to the result obtained by the injection of the same amount of pituitary-derived (international standard) hGH. A comparision of the secondary structures of rhGH and rMet-hGH by circular dichroism spectrophotometer demonstrated that the removal of the methionyl residue from rMet-hGH did not exert any effect on the structure of the growth hormone. In conclusion, methionyl-free human growth hormone produced from yeast was highly potent in biological activity and maintained a legitimate three dimensional structure.

  • PDF

Interaction of Bovine Growth Hormone with Buffalo Adipose Tissue and Identification of Signaling Molecules in Its Action

  • Sodhi, R.;Rajput, Y.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1030-1038
    • /
    • 2007
  • Results on localization of growth hormone receptor (GHR), interaction of growth hormone (GH) with receptor in buffalo adipose tissue and identification of activated signaling molecules in the action of GH are presented. Bovine GH (bGH) was labeled with fluorescein or biotin. Fluorescein-labelled bGH was used for localization of GHRs in buffalo adipocytes. The receptors were present on the cell surface. The affinity of binding of GH to its receptor was determined by designing an experiment in which buffalo adipose tissue explants, biotinylated GH and streptavidin-peroxidase conjugate were employed. The affinity constant was calculated to be $2{\times}10^8M^{-1}$. The receptor density on adipose tissue was found to be 1 femto mole per mg of tissue. Signalling molecules generated in the action of GH were tentatively identified by employing Western blot and enhanced chemiluminescence techniques using anti-phosphotyrosine antibody. Based on molecular weights of proteins reactive to anti-phosphotyrosine antibody, three signaling molecules viz. insulin receptor substrate, Janus activated kinase (Jak) and mitogen activated protein were tentatively identified. These signaling molecules appeared in a time (incubation time of explants with growth hormone) dependent way. The activation of Jak2 was confirmed by employing anti-Jak2 antibody in a Western blot. The activation of Jak2 occurred during 5 min incubation of buffalo adipose tissue explants with GH and incubation for an additional period, viz. 30 min. or 60 min., resulted in a drastic reduction in activation. The results suggest that Jak2 activation is an early event in the action of GH in buffalo adipose tissue.

Preparation and Characterization of an Antibody Antagonist That Targets the Porcine Growth Hormone Receptor

  • Cui, Huanzhong;Wang, Yanrong;Song, Meng;Zhang, Hui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1508-1514
    • /
    • 2016
  • A series of antagonists specifically targeting growth hormone receptors (GHR) in different species, such as humans, rats, bovines, and mice, have been designed; however, there are currently no antagonists that target the porcine growth hormone (GH). Therefore, in this study, we developed and characterized a porcine GHR (pGHR) antibody antagonist (denoted by AN98) via the hybridoma technique. The results from enzyme-linked immunosorbent assay, fluorescence activated cell sorter, indirect immunoinfluscent assay, and competitive receptor binding analysis showed that AN98 could specifically recognize pGHR, and further experiments indicated that AN98 could effectively inhibit pGH-induced signalling in CHO-pGHR cells and porcine hepatocytes. In addition, AN98 also inhibited GH-induced insulin-like growth factor-1 (IGF-1) secretion in porcine hepatocytes. In summary, these findings indicated that AN98, as a pGHR-specific antagonist, has potential applications in pGH-pGHR-related research on domestic pigs.

Effect of Hormone Therapy on Long-term Outcomes of Patients with Human Epidermal Growth Factor Receptor 2-and Hormone Receptor-Positive Metastatic Breast Cancer: Real World Experience in China

  • Du, Feng;Yuan, Peng;Wang, Jia-Yu;Ma, Fei;Fan, Ying;Luo, Yang;Xu, Bing-He
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.903-907
    • /
    • 2015
  • Background: Among human epidermal growth factor receptor 2 (HER2)-positive breast cancer, more than half are also hormone receptor (HR)-positive. Although HR is a predictive factor for the efficacy of hormone therapy, there are still some uncertainties in regard to the effects on patients with HR-positive and HER2-positive metastatic breast cancers due to the potential resistance to hormone therapy caused by co-expression of HR and HER2. There are no clinical trials directly comparing the efficacy of hormonal therapy with chemotherapy. Materials and Methods: To examine the real-world effect of hormone therapy on patients with HR-positive and HER2-positive metastatic breast cancers, a cross-sectional study of a representative sample of the Chinese population was conducted. The study included 113 patients who received first-line and second-line palliative treatment between 2005 and 2010 in the Cancer Institute and Hospital, Chinese Academy of Medical Science. The effect of hormone therapy on overall survival (OS) was studied. Results: The patients who received hormone therapy (n=51) had better overall survival in contrast to those who received chemotherapy with anti-HER2 therapy (n=62) in first- or second-line treatment. The difference was of borderline statistical significance (51.8m vs 31.9m, p=0.065). In addition, the effect of hormone therapy did not differ significantly with other prognostic factors, including age (${\leq}50$ years or >50 years), disease free survival (${\geq}2$ years or < 2 years) and site of metastasis (visceral or bone/soft tissue). On multivariate analysis, administration of hormone therapy was associated with a trend toward a favorable prognosis (p=0.148, HR=0.693, 95%CI 0.422-1.139). Age more than 50 years was the sole independent harmful prognostic factor (p<0.001, HR=2.797, 95%CI 1.676-4.668). Conclusions: Our data suggest that hormonel therapy may improve outcomes of the patients with ER-positive and HER2-positive metastatic breast cancer.

The role of p21/CIP1/WAF1 (p21) in the negative regulation of the growth hormone/growth hormone receptor and epidermal growth factor/epidermal growth factor receptor pathways, in growth hormone transduction defect

  • Kostopoulou, Eirini;Gil, Andrea Paola Rojas;Spiliotis, Bessie E.
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.204-209
    • /
    • 2018
  • Purpose: Growth hormone transduction defect (GHTD) is characterized by severe short stature, impaired STAT3 (signal transducer and activator of transcription-3) phosphorylation and overexpression of the cytokine inducible SH2 containing protein (CIS) and p21/CIP1/WAF1. To investigate the role of p21/CIP1/WAF1 in the negative regulation of the growth hormone (GH)/GH receptor and Epidermal Growth Factor (EGF)/EGF Receptor pathways in GHTD. Methods: Fibroblast cultures were developed from gingival biopsies of 1 GHTD patient and 1 control. The protein expression and the cellular localization of p21/CIP1/WAF1 was studied by Western immunoblotting and immunofluorescence, respectively: at the basal state and after induction with $200-{\mu}g/L$ human GH (hGH) (GH200), either with or without siRNA CIS (siCIS); at the basal state and after inductions with $200-{\mu}g/L$ hGH (GH200), $1,000-{\mu}g/L$ hGH (GH1000) or 50-ng/mL EGF. Results: After GH200/siCIS, the protein expression and nuclear localization of p21 were reduced in the patient. After successful induction of GH signaling (control, GH200; patient, GH1000), the protein expression and nuclear localization of p21 were reduced. After induction with EGF, p21 translocated to the cytoplasm in the control, whereas in the GHTD patient it remained located in the nucleus. Conclusion: In the GHTD fibroblasts, when CIS is reduced, either after siCIS or after a higher dose of hGH (GH1000), p21's antiproliferative effect (nuclear localization) is also reduced and GH signaling is activated. There also appears to be a positive relationship between the 2 inhibitors of GH signaling, CIS and p21. Finally, in GHTD, p21 seems to participate in the regulation of both the GH and EGF/EGFR pathways, depending upon its cellular location.

Effect of Retinoic Acid, Thyroid Hormone and Hydrocortisone on Viability and Differentiation in SK-N-SB Neuroblastoma Cell Lines (Neuroblastoma세포의 생존과 분화에 미치는 retinoic acid, thyroid hormone, 및 hydrocortisone의 작용)

  • 이경은;배영숙
    • Biomolecules & Therapeutics
    • /
    • v.8 no.4
    • /
    • pp.285-292
    • /
    • 2000
  • The effects of the members of the same nuclear receptor superfamily (all-trans retinoic acid (RA), thyroid hormone(T3) or hydrocortisone) on proliferation and differentiation in the SK-N-SH neuroblastoma (NB) cell lines were studied. NB cells were treated with RA, T3, or hydrocortisone at concentration of 10$^{-6}$ M or 10$^{-8}$ M for 3 days or 7 days. RA induced concentration- and time-dependent morphologic differentiation(neurite outgrowth and microtubule-associated protein expression) and growth inhibition in NB cells. Treatment of 10$^{-7}$ M T3 for 7 days increased viability and differentiation of NB cells. Treatment of 10$^{-6}$ M hydrocortisone for 7 days increased viability of NB cells. Although these three effectors are members of the same receptor superfamily, the regulation of brain development may be carried out in a different manner.

  • PDF