• 제목/요약/키워드: grouting solidification

검색결과 17건 처리시간 0.026초

지반주입재 종류별 주입특성 및 환경적 유해성에 관한 연구 (The Injection Characteristics and Environmental Effects for Grouting Materials)

  • 천병식;이재영;하광현
    • 한국지반환경공학회 논문집
    • /
    • 제3권4호
    • /
    • pp.37-49
    • /
    • 2002
  • 본 연구에서는 고강도 고내구성 및 환경에 대한 안정성이 높은 주입재료를 주입재 형태별로 즉 현탁액형, 용액형 주입재에 배합설계를 실시하여 주입압, 지반조건에 따른 주입효과와 환경적 유해성을 분석 검토하고자 한다. 주입재 특성 및 주입효과에 대한 연구결과, 현탁액형 주입재에서는 초미립자시멘트가 보통시멘트에 비하여 상당히 높은 침투성 및 고결율을 나타냄을 알 수 있었고 용액형 주입재에 사용된 인산과 탄산수소나트륨의 경우 초미립자시멘트와 유사한 경향을 나타내었다. 주입된 고결체의 압축강도 시험결과, 현탁액형 주입재의 초미립자시멘트가 상당한 고강도를 나타났으나 용액형 주입재의 경우 현탁액형 주입재에 비하여 매우 낮은 강도를 나타내었다. 또한 주입재가 가지고 있는 환경적 유해성 여부를 평가하기 위해 대상시료를 주입재의 원재료 및 주입재의 고결시편의 양생일수에 따라 중금속 용출시험을 실시한 결과, 선정한 약액조합 및 고결체의 중금속 함량은 규제기준을 만족하였다.

  • PDF

시멘트계 주입재의 침투특성에 관한 실험적 연구 (A Study on the Infiltration Porperties of Cement Grout Material)

  • 천병식;신동훈;이종욱;김진춘;이준우;안익균;이승범
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.297-304
    • /
    • 2002
  • This study is about penetrability of Micro Cement(MC) used for ground improvement. In this study, the characteristics of chemical grouting such as solidification, penetrability were analyzed experimentally by changing permeability of ground, grain size and relative density of grout material. For evaluating applicability of grout material, solidification test and penetrability test were performed. From the results of the tests, effective solidification ratio and penetrability ratio of MC was each 75%, 86% to be excellent when ground permeability was in the range of 10$^{-2}$ and 10$^{-4}$ cm/sec. Otherwise, those of Ordinary Portland Cement(OPC) were both lower than 50% to be poor. When penetrability of grout material is needed for improvement of dam foundation and soft ground, application of MC Is much superior to that of the other materials. The results of the grouting tests in the water flowing ground show that solidification effect of long gel-time grout material is excellent as injection pressure increases when groundwater velocity is relatively low. But when groundwater velocity is relatively high, solidification effect of long gel-time grout material is very poor because most grout materials are outflowed. Therefore, as groundwater velocity is high, effective solidification ratio of long gel-time grout material is better than that of short gel-time grout material, also penetration distance of long gel-time grout material is longer than that of short gel-time grout material.

  • PDF

Experimental study on solidification of uranium tailings by microbial grouting combined with electroosmosis

  • Jinxiang Deng;Mengjie Li;Yakun Tian;Lingling Wu;Lin Hu;Zhijun Zhang;Huaimiao Zheng
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4527-4542
    • /
    • 2023
  • The present microbial reinforcement of rock and soil exhibits limitations, such as uneven reinforcement effectiveness and low calcium carbonate generation rate, resulting in limited solidification strength. This study introduces electroosmosis as a standard microbial grouting reinforcement technique and investigates its solidification effects on microbial-reinforced uranium tailings. The most effective electroosmosis effect on uranium tailings occurs under a potential gradient of 1.25 V/cm. The findings indicate that a weak electric field can effectively promote microbial growth and biological activity and accelerate bacterial metabolism. The largest calcium carbonate production occurred under the gradient of 0.5 V/cm, featuring a good crystal combination and the best cementation effect. Staged electroosmosis and electrode conversion efficiently drive the migration of anions and cations. Under electroosmosis, the cohesion of uranium tailings reinforced by microorganisms increased by 37.3% and 64.8% compared to those reinforced by common microorganisms and undisturbed uranium tailings, respectively. The internal friction angle is also improved, significantly enhancing the uniformity of reinforcement and a denser and stronger microscopic structure. This research demonstrates that MICP technology enhances the solidification effects and uniformity of uranium tailings, providing a novel approach to maintaining the safety and stability of uranium tailings dams.

시멘트계 주입재의 주입특성에 관한 연구 (A Study on the Properties of Grout Materials Based on Cement Type)

  • 천병식;최중근
    • 한국지반공학회논문집
    • /
    • 제18권5호
    • /
    • pp.229-236
    • /
    • 2002
  • 본 논문은 실용화된 지반개량용 마이크로시멘트 및 보통포틀랜드시멘트의 주입특성에 관한 연구로서 기초물성, 고결율, 침투성과 같이 실험적으로 주입재의 입도와 다짐정도를 조정하고, 주입대상 토사지반의 투수계수를 3종류로 변화시컥 약액주입의 주요 특성을 검토한 것이다. 주입재의 적용성을 평가하기 위하여 고결성 시험 및 침투성 시험을 실시한 결과, 모형토사지반의 상대밀도에 따른 투수계수를 $10^{-4}$~$10^{-2}$cm/sec로 변화시킨 경우, 마이크로시멘트는 투수 계수 $10^{-4}$cm/sec에서 유효고결율 75%, 침투주입율 86%로서 침투성 및 고결성이 우수한 결과를 나타낸 반면, OPC는 $10^{-2}$cm/sec에서 유효고결율 및 침투주입율이 50% 미만으로서 원활한 침투주입이 될 수 없음을 알 수 있었다. 댐 기초 지반 및 연약지반의 보강을 위해 주입재의 침투성이 요구되는 경우에는 마이크로시멘트가 적용성이 매우 우수한 것으로 판단된다. 동수지중 모형시험 결과 유속이 상대적으로 느린 경우 주입압이 높을수록, 완결형 주입재가 고결효과가 우수한 반면, 유속이 빠른 경우에는 완결형의 경우 주입재의 대부분이 외부로 유출되는 등 유효고결율이 매우 낮아 고결효과가 불량함을 알 수 있었다.

시멘트계 주입재 종류별 주입 특성 및 환경적 영향 연구 (The Injection Characteristics and Environmental Effects for Grouting Materials Based on Cement)

  • 천병식;이재영;서덕동
    • 한국지반공학회논문집
    • /
    • 제19권2호
    • /
    • pp.159-170
    • /
    • 2003
  • 본 연구에서는 재료분야에서 최근의 기술동향인 고강도.고침투성.고내구성 및 환경에 대한 안정성이 높은 주입재료의 배합설계를 실시하여 주입목적, 지반조건에 따른 주입효과와 환경적 영향성을 분석.검토함으로써 현장적용시 주입설계의 기초자료로 제안하고자 한다. 주입재의 물리, 역학.화학적 특성 및 입자형상을 파악하고 작업성과 침투범위 조정에 필수적인 겔타임을 조정하였다. 또한 실내모형시험을 통하여 고결성, 침투성 및 내구성 평가를 수행하였다. 환경적 영향평가를 위해 본 연구에서 사용된 재료는 현장에서 일반적으로 사용되는 보통포틀랜드시멘트, 고로슬래그시멘트와 초미립자시멘트를 사용하였다. 시멘트계 그라우트재에서의 6가 크롬의 용출특성을 판단하기 위해 원재료의 6가크롬 함유량 시험과 pH변화에 따른 6가크롬의 용출변화량 시험 그리고 그라우트가 적용되는 주변환경에 따른 특성파악을 위해 호모겔을 제작하여 양생수를 각각 초순수, 침출수로 하여, 양생수에 따른 그라우트 호모겔의 일축압축강도 및 6가크롬 용출량의 변화를 시험하였다.

지반보강용 마이크로시멘트의 기초적 특성 (A Fundamental Properties of Microcement in Earth Concreting)

  • 김진춘;최광일;박재용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.217-222
    • /
    • 1994
  • Generally speaking, grouting on the base stabilizes the ground as the aspects of mechanic and engineering properties, with drilling hole at any depth of the earth, and pressuring the cement milk or special chemical grouting material in it. The purpose of grouting on the base is waterproofness and solidification of the ground by earth concreting that the cement milk pass through paticles of soil or crack of rock. This report shows the fundamental properties of microcement compared with those of ordinary portland cement in a point of grouting. It also describes that experimental applications on the treatment of the weathered rock at the constructior of Taegu subway and Boryong earth filled dam site, south of chungchung province, resulted in success.

  • PDF

Experimental investigation of the mechanical behaviors of grouted crushed coal rocks under uniaxial compression

  • Jin, Yuhao;Han, Lijun;Meng, Qingbin;Ma, Dan;Wen, Shengyong;Wang, Shuai
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.273-284
    • /
    • 2018
  • A detailed understanding of the mechanical behaviors for crushed coal rocks after grouting is a key for construction in the broken zones of mining engineering. In this research, experiments of grouting into the crushed coal rock using independently developed test equipment for solving the problem of sampling of crushed coal rocks have been carried out. The application of uniaxial compression was used to approximately simulate the ground stress in real engineering. In combination with the analysis of crack evolution and failure modes for the grouted specimens, the influences of different crushed degrees of coal rock (CDCR) and solidified grout strength (SGS) on the mechanical behavior of grouted specimens under uniaxial compression were investigated. The research demonstrated that first, the UCS of grouted specimens decreased with the decrease in the CDCR at constant SGS (except for the SGS of 12.3 MPa). However, the UCS of grouted specimens for constant CDCR increased when the SGS increased; optimum solidification strengths for grouts between 19.3 and 23.0 MPa were obtained. The elastic moduli of the grouted specimens with different CDCR generally increased with increasing SGS, and the peak axial strain showed a slightly nonlinear decrease with increasing SGS. The supporting effect of the skeleton structure produced by the solidified grouts was increasingly obvious with increasing CDCR and SGS. The possible evolution of internal cracks for the grouted specimens was classified into three stages: (1) cracks initiating along the interfaces between the coal blocks and solidified grouts; (2) cracks initiating and propagating in coal blocks; and (3) cracks continually propagating successively in the interfaces, the coal blocks, and the solidified grouts near the coal blocks. Finally, after the propagation and coalescence of internal cracks through the entire specimens, there were two main failure modes for the failed grouted specimens. These modes included the inclined shear failure occurring in the more crushed coal rock and the splitting failure occurring in the less crushed coal rock. Both modes were different from the single failure mode along the fissure for the fractured coal rock after grouting solidification. However, compared to the brittle failure of intact coal rock, grouting into the different crushed degree coal rocks resulted in ductile deformation after the peak strength for the grouted specimens was attained.

Solidification of uranium mill tailings by MBS-MICP and environmental implications

  • Niu, Qianjin;Li, Chunguang;Liu, Zhenzhong;Li, Yongmei;Meng, Shuo;He, Xinqi;Liu, Xinfeng;Wang, Wenji;He, Meijiao;Yang, Xiaolei;Liu, Qi;Liu, Longcheng
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3631-3640
    • /
    • 2022
  • Uranium mill tailing ponds (UMTPs) are risk source of debris flow and a critical source of environmental U and Rn pollution. The technology of microbial induced calcium carbonate precipitation (MICP) has been extensively studied on reinforcement of UMTs, while little attention has been paid to the effects of MICP on U & Rn release, especially when incorporation of metakaolin and bacillus subtilis (MBS). In this study, the reinforcement and U & Rn immobilization role of MBS -MICP solidification in different grouting cycle for uranium mill tailings (UMTs) was comprehensively investigated. The results showed that under the action of about 166.7 g/L metakaolin and ~50% bacillus subtilis, the solidification cycle of MICP was shortened by 50%, the solidified bodies became brittle, and the axial stress increased by up to 7.9%, and U immobilization rates and Rn exhalation rates decrease by 12.6% and 0.8%, respectively. Therefore, the incorporation of MBS can enhance the triaxial compressive strength and improve the immobilization capacity of U and Rn of the UMTs bodies solidified during MICP, due to the reduction of pore volume and surface area, the formation of more crystals general gypsum and gismondine, as well as the enhancing of coprecipitation and encapsulation capacity.

Combined bi-borehole technology for grouting and blocking of flowing water in karst conduits: Numerical investigation and engineering application

  • Pan, Dongdong;Zhang, Yichi;Xu, Zhenhao;Li, Haiyan;Li, Zhaofeng
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.391-405
    • /
    • 2022
  • A newly proposed grouting simulation method, the sequential diffusion solidification method was introduced into the numerical simulation of combined bi-borehole grouting. The traditional, critical and difficult numerical problem for the temporal and spatial variation simulation of the slurry is solved. Thus, numerical simulation of grouting and blocking of flowing water in karst conduits is realized and the mechanism understanding of the combined bi-borehole technology is promoted. The sensitivity analysis of the influence factors of combined bi-borehole grouting was investigated. Through orthogonal experiment, the influences of proximal and distal slurry properties, the initial flow velocity of the conduit and the proximal and distal slurry injection rate on the blocking efficiency are compared. The velocity variation, pressure variation and slurry deposition phenomenon were monitored, and the flow field characteristics and slurry outflow behavior were analyzed. The interaction mechanism between the proximal and distal slurries in the combined bi-borehole grouting is revealed. The results show that, under the orthogonal experiment conditions, the slurry injection rate has the greatest impact on blocking. With a constant slurry injection rate, the blocking efficiency can be increased by more than 30% when using slurry with weak time-dependent viscosity behavior in the distal borehole and slurry with strong time-dependent viscosity behavior in the proximal borehole respectively. According to the results of numerical simulation, the grouting scheme of "intercept the flow from the proximal borehole by quick-setting slurry, and grout cement slurry from the distal borehole" is put forward and successfully applied to the water inflow treatment project of China Resources Cement (Pingnan) Limestone Mine.

친환경 SCW공법용 지반고화재 경화체의 내구특성 (Durable Characteristic of Ground Solidification Material's Body of Hardening used Eco-friendly SCW Method)

  • 조정규;형원길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.118-119
    • /
    • 2017
  • In the S.C.W (soil cement wall) grouting solution, Cement grout ratio of 1 part Portland cement and 1part water is being used. However, Co2 and harmful heavy metals such as cr6+ are discharged in the process, causing a serious environmental issue. The purpose of the present study is therefore to substitute cement grout to inorganic binder and identify durability properties of ground solidification materials.

  • PDF