• Title/Summary/Keyword: grouting pressure

Search Result 204, Processing Time 0.025 seconds

A study on hydraulic behaviour and leakage control of segment linings using the numerical method (수치해석을 이용한 세그먼트라이닝의 수리거동과 누수제어 연구)

  • Shin, Jong-Ho;Shin, Yong-Suk;Pam, Dong-In;Chae, Sung-Elm;Choi, Kyu-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.131-140
    • /
    • 2009
  • It has been repeatedly reported that a drainage system of a drained tunnel is deteriorated. And consequently the water pressure on the lining increases with time. However, little research on the watertight tunnel was found in the literatures. According to field measurements, leakage of the undrained tunnel has increased with time, which is completely opposite to the behavior of the drained tunnel. It is evident that the hydraulic deterioration of the tunnel lining changes the water pressure on the lining and the amount of leakage, thus the design coneept in terms of groundwater is not maintained tightly throughout the life time of the tunnel. The Segment lining is generally constructed as watertight. However, it is frequently reported that the leakage in the segment tunnel increases with time. It is also reported that the leakage is generally concentrated at the joints of the segments. In this study structural and hydraulic interaetion of the segment lining due to the hydraulic deterioration of the segments and the joints is investigated using the numerical modeling method. An electric utility tunnel below groundwater table is considered for the analyses. The effects of hydraulic deterioration of the segment lining are identified in terms of ground loading, water pressure and lining behavior. A remedial grouting measure for leakage is also numerically simulated, and its appropriateness is evaluated.

A stability study of deep and double-deck tunnels considering shape and reinforcing method of an enlarged section by using numerical analyses (수치해석을 이용한 대심도 복층터널의 확폭단면 형상 및 보강방법에 대한 안정성 연구)

  • You, Kwang-Ho;Jin, Su-Hyun;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.41-56
    • /
    • 2017
  • Recently, the necessity of deep and double-deck tunnels has been grown day by day due to the increase of traffic volume at metropolitans and thus the study on the divergence of those tunnels becomes required. Therefore sensitivity analyses were conducted with FLAC 2D program by selecting ground condition, coefficient of lateral pressure, support pattern, and depth of rock cover as parameters. Ultimately, this study is to find the optimal shape and support method of a diverged section. As the results of this study, it turned out that the box type gave higher stability of the section than arch type unlike the general thought. It can be explained that the arch type has about 30% bigger excavation area than the box type. When the ground conditions are poor, steel pipe grouting reinforcement gives higher stability than rockbolt reinforcement, but its thickness and range do not give a great influence on the stability of the enlarged section.

Influence of Design Parameters of Grout Injection in Rock Mass using Numerical Analysis (암반 그라우팅 주입 설계변수가 주입성능에 미치는 영향의 수치해석적 평가)

  • Lee, Jong Won;Kim, Hyung Mok;Yazdani, Mahmoud;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.324-332
    • /
    • 2017
  • In this paper, a numerical analysis of one-dimensional viscous fluid flow in a rock joint using UDEC code is performed to evaluate the effect of design parameters on injection performance. We consider injection pressure, fluid compressibility, time dependence of yield strength and viscosity of injected grout fluid, and mechanical deformation of joint as the design parameters, and penetration length and flow rate of injection are investigated as the injection performance. Numerical estimations of penetration length and flow rate were compared to analytical solution and were well comparable with each other. We showed that cumulative injection volume can be over-estimated by 1.2 times than the case that the time-dependent viscosity evolution is not considered. We also carried out a coupled fluid flow and mechanical deformation analysis and demonstrated that injection-induced joint opening may result in the increment of cumulative volume by 4.4 times of that from the flow only analysis in which joint aperture is kept constant.

Case History Evaluation of Axial Behavior of Micropiles (소구경말뚝의 축방향 거동에 대한 사례 연구)

  • Jeon Sang-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.25-32
    • /
    • 2004
  • This paper examines the results of full-scale field tests on micropiles and side resistance is evaluated with respect to axial displacements and soil properties. Both cohesive and cohesionless soils are included in this evaluation. For all practical purposes, the developed load-displacement relationship and the geotechnical soil properties for each micropile and soil type can be used to represent the available data well through normalized average values and empirical correlations. There is a significant difference in load-carrying capacity between micropiles and drilled shafts that results primarily from the micropile pressure-grouting installation effects on the state of stress in the ground. The results show that micropiles can have a significant increase of capacity over larger-diameter drilled shafts at shallower depths with D/B < 100 or so. In cohesive soils, the typical increase is on the order of 1.5 with values as high as 2.5. For cohesionless soils, the typical increases are in the range of 1.5 to 2.5 with values as high as 6.

A case study on asymmetric deformation mechanism of the reserved roadway under mining influences and its control techniques

  • Li, Chen;Wu, Zheng;Zhang, Wenlong;Sun, Yanhua;Zhu, Chun;Zhang, Xiaohu
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.449-460
    • /
    • 2020
  • The double-lane arrangement model is frequently used in underground coal mines because it is beneficial to improve the mining efficiency of the working face. When the double-lane arrangement is used, the service time of the reserved roadway increases by twice, which causes several difficulties for the maintenance of the roadway. Given the severe non-uniform deformation of the reserved roadway in the Buertai Coal Mine, the stress distribution law in the mining area, the failure characteristics of roadway and the control effect of support resistance (SR) were systematically studied through on-site monitoring, FLAC 3D numerical simulation, mechanical model analysis. The research shows that the deformation and failure of the reserved roadway mainly manifested as asymmetrical roof sag and floor heave in the region behind the working face, and the roof dripping phenomenon occurred in the severe roof sag area. After the coal is mined out, the stress adjustment around goaf will happen to some extent. For example, the magnitude, direction, and confining pressure ratio of the principal stress at different positions will change. Under the influence of high-stress rotation, the plastic zone of the weak surrounding rock is expanded asymmetrically, which finally leads to the asymmetric failure of roadway. The existing roadway support has a limited effect on the control of the stress field and plastic zone, i.e., the anchor cable reinforcement cannot fully control the roadway deformation under given conditions. Based on obtained results, using roadway grouting and advanced hydraulic support during the secondary mining of the panel 22205 is proposed to ensure roadway safety. This study provides a reference for the stability control of roadway with similar geological conditions.

Analysis of the Physical and Mechanical Properties of Injected High-Density Polyurethane from Laboratory Experiments and Field Tests (실내실험 및 현장실험을 통한 고밀도 폴리 우레탄 공법의 물리·역학적 특성 분석)

  • Choi, Junyoung;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.83-101
    • /
    • 2021
  • The high-density polyurethane method uses the instantaneous expansion pressure of injected material to stabilize soft ground, allowing reinforcement, restoration, and construction to be carried out in suboptimal ground conditions. Under normal and, even poor conditions, the method is easily applied because the working time is very short. The method is environmentally friendly and results have excellent durability. The purpose of this study was to verify the physical and mechanical properties of high-density polyurethane in the ground. Initial testing of strength, direct shear, and soil environment stability was followed by testing for permeability in order to address environmental concerns. The results of the experiments showed that the internal friction angle was about twice as high and the adhesion was about 2.5 to 3.5 times higher than for dense and hard clay, and that the permeability factor was significantly lower compared with the existing grouting method, within the range of 1.0 × 10-5.

The Study on Improvement Methods for The Seismic Performance of Port Structures (항만 구조물의 내진성능 향상을 위한 배면 지반의 보강방안에 관한 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Jin-Hae;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.151-165
    • /
    • 2019
  • In this study, the four types of improvement methods (increase self weight and reducing sliding force etc.) were proposed depending on install location with compaction grouting to improve seismic performance of existing port structure and optimal methods by analyzing the effects of improvement (stability, constructability and economy) by theoretical and numerical methods. From the dynamic time history analysis for artificial seismic waves, the results indicated that the horizontal displacement after improvement decreased compared to before improvement, however the displacement reduction effect among improvement methods was not significantly different. Slope stability based on the strength reduction method and the limit equilibrium analysis method, it is confirmed that the passive pile method is more safe than other methods. It is due to the shear strength at the failure surface is increased. In addition, the analysis of constructability and economy showed that the reduction of earth pressure method (type 02) and the passive pile method (type 03) are excellent. However, in the case of the passive pile method is concerned that there is a shortage of design cases and the efficiency can be reduced depend on various constraints such as ground conditions.

A Basic Study on Upward Soil Nailing Combined Horizontal Drainage (수평배수공을 겸한 상향식 쏘일네일링 공법의 기초연구)

  • Kim, Hongtaek;Lee, Jungjae;Chung, Jongmin;Choi, Geunhyeok;Lee, In
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.151-158
    • /
    • 2009
  • In the early 1990s, soil nailing was first introduced as method of reinforcement for the slope stability and ground excavation, and as its application was increased the improved soil nailing was also developed. Most recently used for grout soil nailing greatly improve the methods and techniques for self-improvement techniques are classified as soil nailing. As the representative for the grout pressure method to improve the join method pressure grouting and improved method for the self-drilled soil nailing, removable soil nailing, upward soil nailing combined with horizontal drainage system. This paper is to compare upward soil nailing combined with horizontal drainage system with downward direction of the soil nailing. In order to study the limit equilibrium slope stability analysis and comparison with factor of safage, excavation for the vertical displacement for comparison with continuous analysis. According to this study, safage factor is decreased considerably using limit equilibrium analysis and makes no odds for the horizontal displacement when soil nail was installed upward.

  • PDF

Analytical Evaluation on Soil Slope Reinforced by Pressure Grouted Protrusion Type Soil Nailing (가압식 돌기네일에 의해 보강된 토사 비탈면의 해석적 평가)

  • Hong, Cheor-Hwa;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.5-16
    • /
    • 2017
  • Soil nailing is the most general method to reinforce the slope by taking pullout and shear resistance force of the nail for stabilizing the slope. Domestic soil nailing design method considers only pullout resistance and does not consider the shear resistance sufficiently. In case of nail, the effect of tensile stress is dominant, but it is desirable to design by considering shear stress as well as tensile stress in case of slope where circle failures occur. Recently, studies on the shear resistance effect of nails have been carried out in the geotechnical field. However, many researches on the shear reinforcement effect of soil nailing have not been conducted until now. Most of the studies are about increasing pullout resistance by improving material, shape and construction method of nail. Therefore, it is necessary to the study on shear resistance of soil nailing and development of new methods to increase the shear force. In this study, large shear test and limit equilibrium analysis have been performed for a new soil nailing method to increase the shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar. The study results showed that shear resistance of protrusion type soil nailing increased compared to soil nailing and it is more effective when applied to the ground with large strength parameters.

Effect of pore-water salinity on freezing rate in application of rapid artificial ground freezing to deep subsea tunnel: concentration of laboratory freezing chamber test (고수압 해저터널에 급속 인공동결공법 적용시 간극수의 염분 농도가 동결속도에 미치는 영향 평가: 실내 동결챔버시험 위주로)

  • Oh, Mintaek;Lee, Dongseop;Son, Young-Jin;Lee, In-Mo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.401-412
    • /
    • 2016
  • It is extremely difficult to apply conventional grouting methods to subsea tunnelling construction in the high water pressure condition. In such a condition, the rapid artificial freezing method can be an alternative to grouting to form a watertight zone around freezing pipes. For a proper design of the artificial freezing method, the influence of salinity on the freezing process has to be considered. However, there are few domestic tunnel construction that adopted the artificial freezing method, and influential factors on the freezing of the soil are not clearly identified. In this paper, a series of laboratory experiments were performed to identify the physical characteristics of frozen soil. Thermal conductivity of the frozen and unfrozen soil samples was measured through the thermal sensor adopting transient hot-wire method. Moreover, a lab-scale freezing chamber was devised to simulate freezing process of silica sand with consideration of the salinity of pore-water. The temperature in the silica sand sample was measured during the freezing process to evaluate the effect of pore-water salinity on the frozen rate that is one of the key parameters in designing the artificial freezing method in subsea tunnelling. In case of unfrozen soil, the soil samples saturated with fresh water (salinity of 0%) and brine water (salinity of 3.5%) showed a similar value of thermal conductivity. However, the frozen soil sample saturated with brine water led to the thermal conductivity notably higher than that of fresh water, which corresponds to the fact that the freezing rate of brine water was greater than that of fresh water in the freezing chamber test.