• Title/Summary/Keyword: grouting pressure

Search Result 204, Processing Time 0.025 seconds

A Study on Performance of Vertical Ground Heat Exchanger for Heat Pump (히트펌프용 수직형 지중열교환기의 성능에 관한 연구)

  • Chang, Ki-Chang;Chung, Min-Ho;Yoon, Hyung-Kee;Ra, Ho-Sang;Yoo, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.466-469
    • /
    • 2007
  • Heat pumps are used for air-conditioning systems in commercial buildings, schools, and factories because of low operating and maintenance costs. These systems use the earth as a heat source in heating mode and a heat sink in cooling mode. Ground heat exchangers are classified by a horizontal type and vertical type according to the installation method. A horizontal type means that a heat exchanger is laid in the trench bored in 1.2 to 1.8 m depth. And a vertical type is usually constructed by placing small diameter high density polyethylene tube in a vertical borehole. Vertical tube sizes range from 20 to 40 mm nominal diameter. Borehole depth range between 100 and 200 m depending on local drilling conditions and available equipment. In this study, to evaluate the performance of single u-tube with bentonite grouting, single u-tube with broken stone grouting and double n-tube bentonite grouting of vertical ground heat exchangers, test sections are buried on the earth and experimental apparatus is installed. Therefore the heat transfer performance and pressure loss of these are estimated.

  • PDF

Effect of Vibration on Grout Permeation Characteristics (진동주입이 그라우트재의 침투 특성에 미치는 영향 연구)

  • Lee, Mun-Seon;Kim, Jong-Sun;Lee, Sung-Dong;Choi, Young-Joon;Yang, Jae-Man;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.267-278
    • /
    • 2010
  • To improve the grout penetration characteristics, vibration method was adopted in this study. The grout material perturbed by cyclic vibration is injected into the ground. By applying the vibrating flow system, cement particles will become less adhesive and the clogging tendency will be decreased. A series of pilot-scale chamber tests were performed to verify the enhancement of the groutability by applying the vibratory grout injection; assessment on change of the lumped parameter $\theta$ which represents a barometer of clogging phenomenon was made. Moreover, the effect of vibratory grout injection through the joint was also investigated using artificially made rock joints. Experimental results as well as analytical results show that the grout penetration depth can be substantially improved by vibration grouting. Moreover, it was found that enhancement of the permeation grouting due to vibratory injection is more dominant at low grouting pressure of less than 400kPa.

  • PDF

Injection Characteristics of Cement Grouting Waterproof by Model Tests (모형실험을 통한 시멘트그라우팅 지수기법의 주입특성)

  • 천병식;최춘식;하광현
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.61-72
    • /
    • 2002
  • In this study, model tests were performed to evaluate the injection characteristics of cement grouting which was used as waterproof method for leakage of underground structures. To simulate in situ condition, model tests were performed with varying the ground conditions such as the kinds of test soils, soil density, water content, etc. and the injection conditions such as kinds of injection materials, injection pressure, injection quantity, injection velocity, etc. From the results of model tests, the major factors influencing the permeability of injection material were determined to be the kinds of soils and soil density. To obtain optimal injection effects, injection should be performed after investigating the condition of backside ground accurately.

Evaluation on the leakage of ground-water through fractured rock under a spillway (여수로 구조물 하부 암반 내 발달한 절리들을 통한 지하수 누수량 분석)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Jeong, Ui-Jin;Lee, Joong-Woo
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.129-134
    • /
    • 2006
  • Recently, spillways are need to control stable water level for supporting main dams because of floods by unusual change of weather such as Typhoon Rusa. This study has been focused on the amount of leakage through the rock mass distributed fractures and joints under the opened emergency spillway. It is very important to evaluate the amount of leakage as these affect stability of spillway by interaction between effective stress and pore pressure. The commercial program MAFIC has been used for analyzing groundwater flow in fractured rock mass. The results showed that the values of range, average and deviation of leakage were 2.85∼3.79×10-1, 3.32×10-1 and 1.70×10-2 m3/day/m2 respectively. Secondary, we have estimated the effect of grouting after the transmissivity(Tf) of joint 1 as main pathway of leakage known from above results was changed from 1.78×10-7 to 1.59×10-9 m2/s. The results showed that the values of range, average and deviation of leakage were 7.80×10-4∼1.53×10-3, 1.18×10-3 and 1.32×10-4 m3/day/m2 respectively. As the result, the amount of leakage after grouting has been decreased by a ratio of 1 to 277.

  • PDF

Evaluation of Injection capabilities of a biopolymer-based grout material

  • Lee, Minhyeong;Im, Jooyoung;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • Injection grouting is one of the most common ground improvement practice to increase the strength and reduce the hydraulic conductivity of soils. Owing to the environmental concerns of conventional grout materials, such as cement-based or silicate-based materials, bio-inspired biogeotechnical approaches are considered to be new sustainable and environmentally friendly ground improvement methods. Biopolymers, which are excretory products from living organisms, have been shown to significantly reduce the hydraulic conductivity via pore-clogging and increase the strength of soils. To study the practical application of biopolymers for seepage and ground water control, in this study, we explored the injection capabilities of biopolymer-based grout materials in both linear aperture and particulate media (i.e., sand and glassbeads) considering different injection pressures, biopolymer concentrations, and flow channel geometries. The hydraulic conductivity control of a biopolymer-based grout material was evaluated after injection into sandy soil under confined boundary conditions. The results showed that the performance of xanthan gum injection was mainly affected by the injection pressure and pore geometry (e.g., porosity) inside the soil. Additionally, with an increase in the xanthan gum concentration, the injection efficiency diminished while the hydraulic conductivity reduction efficiency enhanced significantly. The results of this study provide the potential capabilities of injection grouting to be performed with biopolymer-based materials for field application.

Permeation Grouting Effect for Repair and Reinforcement of Old Dam (노후댐 보수보강을 위한 침투그라우팅 효과 분석)

  • LEE, Dong-Beom;Lim, Heui-Dae;Song, Young-Su
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.277-295
    • /
    • 2018
  • As it has become difficult to secure new water resources through dam construction due to the critical social public opinions on dam construction from 10 years ago, it is necessary to review the existing water resources through the review of existing dams. Accordingly, access methods, such as planning, construction and management, were carried out using technologies already accumulated in relation to the repair and reinforcement of the dam. As a result of the repair and reinforcement, permeation grouting has been performed in many dams, but the establishment of the technology is insufficient so far, and the published paper at home and abroad is extremely rare. In this thesis, low-pressure penetration and grouting reinforcement technologies for the YC dam are analyzed in detail. As a result, penetration grouting has shown that it can be effectively applied to the improvement in the constallability of the core fill-like a YC dam. In addition, the technical details of the experience-proven penetration grouting are given in relation to the injection criteria. It is deemed that the specific analysis data of the Fill Dam penetration grouting technology through this study can be used as useful data for strengthening the repair of Fill Dam and reservoir.

Reduced model experiment to review applicability of tunnel pillar reinforcement method using prestress and steel pipe reinforcement grouting (프리스트레스 및 강관보강 그라우팅을 이용한 터널 필라부 보강공법의 적용성 검토를 위한 축소모형 실험)

  • Kim, Yeon-Deok;Lee, Soo-Jin;Lee, Pyung-Woo;Yun, Hong-Su;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.495-512
    • /
    • 2022
  • Due to the concentration of population in the city center, the aboveground structures are saturated, and the development of underground structures becomes important. In addition, it is necessary to apply the reinforcement construction method for the pillar part of the adjacent tunnel that can secure stability, economy, and workability to the site. In this study, the tunnel pillar reinforcement method using prestress and grouting was reviewed. There are various reinforcement methods that can compensate for the problems of the side tunnel, but as the tunnel pillar construction method using prestress and grouting is judged to be excellent in field applicability, stability, and economic feasibility, it is necessary to review the theoretical and numerical analysis of the actual behavior mechanism. Therefore, a scaled-down model experiment was conducted. The reduced model experiment was divided into PC stranded wire + steel pipe reinforcement grouting + prestress (Case 1), PC strand + steel pipe reinforcement grouting (Case 2), and no reinforcement (Case 3), and the displacement of the pillar and the earth pressure applied to the wall were measured. Through experiments, it was confirmed that the PC stranded wire + steel pipe reinforcement grouting + prestress method is the most excellent reinforcement method among various construction methods. It was judged that it could be derived.

A Study on the Frictional Resistance Chracteristics of Pressurized Soil Nailing Using Rapid Setting Cement (초속경 시멘트를 사용한 가압식 쏘일네일링의 주입시간에 따른 마찰저항특성에 관한 연구)

  • Lee, Arum;Shin, Eunchul;Lee, Chulhee;Rim, Yongkwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Although the soil nailing method is generally used as a gravity grouting, the development and application of pressurized grouting method has recently increased to address the problem of joint generation and filling due to grouting. Pressurized grouting of the soil nailing method is generally used in combination with ordinary portland cement and water. In the field, the cement is mixed with the rapid setting cement to reduce curing time because ordinary portland cement takes more than 10 days to satisfy the required strength. In this study, uniaxial compression tests and laboratory tests were carried out to confirm the efficiency of the grouting material according to the mixing ratio of rapid setting cement. The mixing ratio of 30% grouting satisfies the required strength within 7 days and satisfies the optimum gel time. As a result of the laboratory test with granite weathered soil, the reinforcing effect was confirmed to be 1.5 times as compared with the gravity type at an injection time of 10 seconds and a strain of 15%. The friction resistance increases linearly with the increase of the injection time, but it is confirmed that the friction resistance decreases due to the hydraulic fracturing effect at the injection time exceeding the limit injection pressure. Numerical analysis was performed to compare the stability of slopes not reinforced with slopes reinforced with gravity and pressurized soil nailing.

Evaluation of grout for reinforcing soft section in subsea tunnel (해저터널 연약 구간 보강용 그라우트 내구성 평가)

  • Moon, Junho;Jeong, Ghangbok;Xin, Zhenhua;Kim, Younguk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.947-956
    • /
    • 2018
  • Subsea tunnel built in abyssal zone is exposed to environment under high water pressure caused by seawater and etc., and this high pressure from underground water may facilitate leaching. In particular, since underground water can be easily flown in during construction, this might cause many problems related to cutoff water. Therefore, in order to secure safety, it is necessary to apply grouting equipment and materials which are appropriate to construction environment. Accordingly, in this research, evaluation was made on the physical characteristics of grouting materials (strength, leaching and etc. depending on curing methods for each of used materials and condition) which can be applied during subsea tunnel construction. As a result of this research, stable strength increase was found in CA and CSA type, and it is determined that no decrease in their durability was found, so these can be used as stable materials for structures under influenced by seawater.

A Study on the Waterproofing Performance of Waterproofing Methods for PHC-W Earth Retaining Wall Based on Pressure Chamber Test (PHC-W 흙막이 공법의 차수방안에 관한 차수성능확인을 위한 모형 압력 수조 실험 연구)

  • Choi, Yongkyu;Johannes, Jeanette Odelia;Yun, Daehee;Kim, Chae min;Jeon, Byeong Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.115-125
    • /
    • 2017
  • PHC-W earth retaining wall could be constructed continuously. Various retaining wall methods such as C.I.P. etc. method require separate waterproof method. However, the PHC-W retaining wall method prevents leakage of groundwater by inserting a waterproofing material at connection part between 2 PHC piles. In this study, the experimental study on 3 waterproofing method for PHC-W retaining wall was conducted at the model pressure chamber. In the method using textile with 1-liquid type and 2-liquid type urethane, rapid leak occurred at the pressure of 120 kPa and 140 kPa or more. In the method of textile with grouting, rapid leak occurred at the pressure of 120 kPa or more, however, in this method, the rapid leakage happened at the top part and the bottom part reinforced with urethane.