• Title/Summary/Keyword: grouted soil nail

Search Result 11, Processing Time 0.022 seconds

Stability Analysis for a Slope Reinforced with Pressure Grouted Soil Nails (가압식 그라우팅 쏘일네일 보강사면의 거동분석)

  • Kim, Yong-Min;Yun, Yeo-Hyeok;Lee, Sung-June;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.39-52
    • /
    • 2011
  • This paper describes a new numerical analysis technique in stability analysis for a slope reinforced with pressure grouted soil nails. The installing effect of pressure grouted soil nails can be simulated in this method. Shear strength reduction method associated with finite element method is used for slope stability analysis. Factors of safety for a slope reinforced with pressure grouted soil nails are compared with those for a natural slope and a slope reinforced with gravity grouted soil nails in order to investigate their reinforcing effects. More than 50% increase in the factor of safety is obtained when the slope is reinforced with pressure grouted soil nails compared to the one with gravity grouted soil nails. The reinforcing effects of pressure grouted soil nails become obvious with increase in their length. The reinforcing mechanism of the pressure grouted soil nails for the slope stability can be explained by the slope failure surface expanding gradually toward the backfill. The increased stability of the slope reinforced with pressure grouted soil nails results mainly from their improved pull-out resistance.

Evaluations of load-deformation behavior of soil nail using hyperbolic pullout model

  • Zhang, Cheng-Cheng;Xu, Qiang;Zhu, Hong-Hu;Shi, Bin;Yin, Jian-Hua
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.277-292
    • /
    • 2014
  • Soil nailing, as an effective stabilizing method for slopes and excavations, has been widely used worldwide. However, the interaction mechanism of a soil nail and the surrounding soil and its influential factors are not well understood. A pullout model using a hyperbolic shear stress-shear strain relationship is proposed to describe the load-deformation behavior of a cement grouted soil nail. Numerical analysis has been conducted to solve the governing equation and the distribution of tensile force along the nail length is investigated through a parametric study. The simulation results are highly consistent with laboratory soil nail pullout test results in the literature, indicating that the proposed model is efficient and accurate. Furthermore, the effects of key parameters, including normal stress, degree of saturation of soil, and surface roughness of soil nail, on the model parameters are studied in detail.

Development of Removable Soil Nail (제거식 쏘일 네일 개발 및 성능 평가)

  • Kim, Nak-Kyung;Kim, Sung-Kyu;Kim, Ung-Jin;Kim, Woong-Kyu;Cho, Kyu-Wan;Sin, Sang-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.896-901
    • /
    • 2009
  • A Soil Nail is a structural element which provides load-transfer to the ground in excavation reinforcement applications. The nail may simply consist of a steel tendon, but most commonly the tendon is encapsulated in a cement grouted body to provide corrosion protection and improved load- transfer to the ground. For temporary excavation support in a congested urban area, the steel bar of Soil Nails should be removed to get permission of the private land to install Soil Nails. Several removable nail systems were developed and evaluated by pull-out load tests. The Soil Nail pull-out tests were performed on five nails installed in soft and hard rock at a 00 housing-redevelopment area in seoul. Two nails are plastic socket type and two are complex socket type mixed steel and plastic. The nail was 0.1mm in diameter, 4m long. In this study verification tests, and steel bar removing tests of plastic socket type nails and complex socket type nails were performed and presented.

  • PDF

A Study on Load Transfer between Soil and Nail Using In-situ Pull-out Tests (현장인발시험을 통한 흙-네일의 하중 전이특성에 대한 연구)

  • Kim, Jong-Soo;Yi, Chang-Tok;Min, Kyong-Jun;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.167-174
    • /
    • 1999
  • A Land slide in Granitic Gneiss weathered soil was stabilized successfully with soil nailing using 929mm steel bar. To understand the behavior of load transfer between soil and nail, in-situ pdl-out tests were carried out. The strains of steel bars were measured using strain gauges during pull-out tests. Forces-strain data from laboratory tension tests on steel bar and grouted steel bar were examined to compare with those of the pull-out tests. Comparisons were made between the pull-out test results and laboratory test result to understand load transfer mechanism.

  • PDF

The Case of Measurement for Shallow Soil Tunnel with Pre-Supported Nail Method (저토피 토사터널에 적용된 선지보 네일공법의 시공 및 계측사례)

  • Seo, Dong-Hyun;Lee, Seung-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.69-79
    • /
    • 2012
  • This pre-supported nail method is able to decrease ground displacements more than NATM because this method reinforces ground with grouted steels before tunnel excavation. Therefore this method has advantage of being able to increase the stability and workability. This study presents applicability of pre-supported nail method with case of site measurement for shallow tunnel composed with high groundwater level and unconsolidated soil, performs this research the mechanism of new supporting system is compared with the conventional existing supporting system in terms of soil reinforcement. NATM has characteristics that construction stage displacement of the apparent height difference is observed in the step of divided excavation processing. Otherwise it is analyzed that pre-supported nail method is not sensitive in the displacement problem of excavation processing in comparison to NATM. It is found that this method is very applicable in shallow depth tunnel such as portal area, tunnel in soil and weak zone without arching effect.

Analytical Evaluation on Soil Slope Reinforced by Pressure Grouted Protrusion Type Soil Nailing (가압식 돌기네일에 의해 보강된 토사 비탈면의 해석적 평가)

  • Hong, Cheor-Hwa;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.5-16
    • /
    • 2017
  • Soil nailing is the most general method to reinforce the slope by taking pullout and shear resistance force of the nail for stabilizing the slope. Domestic soil nailing design method considers only pullout resistance and does not consider the shear resistance sufficiently. In case of nail, the effect of tensile stress is dominant, but it is desirable to design by considering shear stress as well as tensile stress in case of slope where circle failures occur. Recently, studies on the shear resistance effect of nails have been carried out in the geotechnical field. However, many researches on the shear reinforcement effect of soil nailing have not been conducted until now. Most of the studies are about increasing pullout resistance by improving material, shape and construction method of nail. Therefore, it is necessary to the study on shear resistance of soil nailing and development of new methods to increase the shear force. In this study, large shear test and limit equilibrium analysis have been performed for a new soil nailing method to increase the shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar. The study results showed that shear resistance of protrusion type soil nailing increased compared to soil nailing and it is more effective when applied to the ground with large strength parameters.

Pull-out Characteristics of Multi-Packer Pressurized Soil Nails (가압 그라우팅 쏘일네일링 공법의 인발거동 특성)

  • Cho, Jae-Yeon;Lee, Sung-June;Jeong, Sang-Seom;Ahn, Byeong-Heun
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.15-22
    • /
    • 2010
  • A series of field pull-out tests were carried out to investigate the behaviour of multi-pressurized soil nails. Ten soil nails were constructed in weathered soil and then, subjected to pull-out loads. The test results showed that the ultimate pull-out resistances of soil nails constructed with high pressure were about 42~142% larger than those obtained from conventional soil nails. The deduced interface shear strength at the ground-grout interface was 71 kPa for conventional soil nails, while higher shear strength of 95~166 kPa was obtained for pressurized nails. The diameter of grouted borehole increased by about 12~27% compared to ordinary soil nails under low pressure. Also, the predicted value by the cavity expansion theory is in good agreement with the measured expanded radius of grout under injection pressure by field pull-out tests.

Slope stabilization with high-performance steel wire meshes in combination with nails and anchors

  • Rudolf Ruegger;Daniel Flum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.3-38
    • /
    • 2000
  • Slope draperies in soil and rock are a well known method to avoid rockfalls into the roads or onto housings. Common wire mesh or a combination of wire mesh and wire rope nets are pinned to the slope by the means of fully grouted nails or anchors. Most of these installations have not been designed to stabilize the slope, but simply avoid the rocks from bouncing. The combination of soil- or rocknailing with a designable flexible facing system offers the advantage of a longterm stabilization of slopes and can replace other standard methods for slope stabilization. The capability to transfer axial and shear loads from the flexible facing system to the anchor points is most decisive for the design of the stabilization system. But the transfer of forces by mesh as pure surface protection devices is limited on account of their tensile strength and above all also by the possible force transmission to the anchoring points. Strong wire rope nets increase the performance for slope stabilizations with greater distances between nails and anchors and are widely used in Europe. However, they are comparatively expensive in relation to the protected surface. Today, special processes enable the production of diagonally structured mesh from high-tensile steel wire. These mesh provide tensile strengths comparable to wire rope nets. The interaction of mesh and fastening to nail / anchor has been investigated in comprehensive laboratory tests. This also in an effort to find a suitable fastening plates which allows an optimal utilization of the strength of the mesh in tangential (slope-parallel) as well as in vertical direction (perpendicular to the slope). The trials also confirmed that these new mesh, in combination with suitable plates, enable substantial pretensioning of the system. Such pretensioning increases the efficiency of the protection system. This restricts deformations in the surface section of critical slopes which might otherwise cause slides and movements as a result of dilatation. Suitable dimensioning models permit to correctly dimension such systems. The new mesh with the adapted fastening elements have already been installed in first pilot projects in Switzerland and Germany and provide useful information on handling and effects.

  • PDF

Pullout Characteristics of Pressure Reinjection-Grouted Reinforcements in Decomposed Granite Soil (화강풍화토 지반에 설치된 압력재주입 그라우팅 보강재의 인발특성)

  • Shim, Yong-Jin;Lee, Jong-Kyu;Lee, Bong-Jik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.61-68
    • /
    • 2012
  • Most widely methods for reinforcement of soil utilized in Korea are anchor method, soil nail method and micro pile method. These methods are classified by the intended use of the structure to be constructed, but the reinforcement of the ground is accomplished contains in common the process of grouting work after inserting the reinforcements. Domestically, gravity grouting has been used mostly so far, but there has always been the risk of insufficient restoration of the loose ground area from the drill holes because the grouting is conducted only by gravity. On the other hand, pressure reinjection grouting may enhance the grouting quality by solving the problem of the existing grouting method considerably since it additionally reinjects grouting through pre-installed tube a certain time after the first grouting. Accordingly, this study evaluated the pullout characteristics by the grouting methods by performing model test on decomposed granite soil, and investigated the support increasing characteristics of reinforcements depending on the curing time, reinjection pressure, and uplift force variation of the pressure reinjection grouting. The result of this research shows that the pressure reinjection grouting demonstrated 1.1~1.3 times of performance of the gravity grouting, and suggests some analysis on optimal water content, reinjection pressure and curing time of the pressure reinjection grouting.