• 제목/요약/키워드: grouping algorithms

검색결과 104건 처리시간 0.024초

연결 영역의 라벨링을 위한 동치테이블 개선 알고리즘 (A Improved Equivalent Table Algorithm for Connected Region Labeling)

  • 오춘석
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.261-264
    • /
    • 2019
  • 경계선 추적을 통해서 결정된 영역의 내부를 래스터 스캔하면서 내부를 일정한 값으로 채워 넣는데 이를 '색칠하기(blob coloring)'라고 하며 보통은 '연결 성분 라벨링(Connected Region labeling)'라 부른다. 이 과정은 각 독립적인 영역들을 고유의 라벨 값으로 구분하여 표시하게 된다. 본 논문에서는 래스터 스캔 결과로 산출된 동치테이블을 동일한 라벨끼리 그룹화 하는데 수많은 그룹이 서로 얽혀서 복잡하므로 신속하고 간단하게 처리할 수 있는 개선된 알고리즘을 제안하고자 한다. 동치테이블 내에서 동일한 그룹으로 묶기 위한 이동 절차를 8단계 알고리즘으로 제시하고 이에 따른 수행 결과를 보여준다.

결함위치식별 기법의 성능 향상을 위한 테스트케이스 그룹화 및 필터링 기법 (Test Case Grouping and Filtering for Better Performance of Spectrum-based Fault Localization)

  • 김정호;이은석
    • 정보과학회 논문지
    • /
    • 제43권8호
    • /
    • pp.883-892
    • /
    • 2016
  • 스펙트럼 기반 결함위치식별 기법은 성공 테스트케이스 대비 실패 테스트케이스에 영향을 많이 받은 스테이트먼트에 의심도를 통계적으로 부여하는 기법이다. 이 기법에서 실패 테스트케이스를 지나간 스테이트먼트에는 의심도를 부여하고 성공 테스트케이스를 지나간 스테이트먼트는 부여된 의심도 일부를 줄이는 역할을 한다. 그러므로 실패 테스트케이스의 역할이 매우 중요하며 부재 시 결함의 위치를 찾을 수 없기도 하다. 하지만 이 기법에서 실패, 성공 테스트케이스를 동시에 입력하여 의심도를 계산하기 때문에 실패 테스트케이스의 고유 특성을 반영할 수 없다는 한계점을 가지고 있다. 본 논문에서는 이와 같은 한계점을 보완하여 보다 정확한 결함위치식별을 도와줄 수 있는 테스트케이스 그룹화기법을 제안한다. 또한, 테스트 효율성을 고려한 필터링 기법을 제안하고 이들을 65개의 알고리즘에 적용해 실효성을 검증한다. EXAM score기준으로 전체의 90% 기법에서 정확도 13%, 효율성이 72% 향상되었다.

시뮬레이션을 이용한 대규모 스마트 TV 서비스 제공을 위한 사용자 그룹핑 알고리즘 성능 분석 (Simulation Analysis of User Grouping Algorithms for Massive Smart TV Services)

  • 전철;이관섭;주우석;정태경;한승철
    • 한국시뮬레이션학회논문지
    • /
    • 제20권1호
    • /
    • pp.61-67
    • /
    • 2011
  • 스마트 TV 시스템은 차세대 핵심 네트워크 서비스 중의 하나로서 통신과 미디어 산업에 급격한 변화를 가져올 것이다. 하지만, 스마트 TV 시스템은 동시접속자가 증가하면 서비스 품질이 급격하게 저하되는 문제가 발생하고 있다. 콘텐츠를 수많은 사용자에게 동시에 전송하는 것은 서버와 네트워크에 큰 부담으로 작용하기 때문이다. 서버의 수용능력의 한계는 서버 클러스터를 구성함으로써 어느 정도 해결할 수 있지만 네트워크의 수용능력의 한계는 부하와 혼잡의 발생 위치를 파악하고 추가적인 자원을 설치하여 해결하는데 어려움이 있다. 이를 해결하기 위해 현재까지 많은 기법들이 제안되었지만 기존의 연구들의 성능분석은 대부분 왕복시간(round-trip time), 다운로드 시간, 패킷 손실 비율과 같은 사용자 중심의 성능척도에만 초점이 맞춰져 있고 스마트 TV 서비스 품질에 중요한 영향을 미치는 동시접속과 전체 네트워크의 부하와 혼잡을 무시하는 경향이 있다. 본 논문에서는 실제 인터넷 테스트베드인 PlanetLab을 이용하여 스마트 TV 서비스 폼질에 중요한 영향을 미치는 사용자 그룹핑 알고리즘을 네트워크의 혼잡도와 부하중심으로 성능분석을 한다.

ELECTRICAL RESISTANCE IMAGING OF TWO-PHASE FLOW WITH A MESH GROUPING TECHNIQUE BASED ON PARTICLE SWARM OPTIMIZATION

  • Lee, Bo An;Kim, Bong Seok;Ko, Min Seok;Kim, Kyung Youn;Kim, Sin
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.109-116
    • /
    • 2014
  • An electrical resistance tomography (ERT) technique combining the particle swarm optimization (PSO) algorithm with the Gauss-Newton method is applied to the visualization of two-phase flows. In the ERT, the electrical conductivity distribution, namely the conductivity values of pixels (numerical meshes) comprising the domain in the context of a numerical image reconstruction algorithm, is estimated with the known injected currents through the electrodes attached on the domain boundary and the measured potentials on those electrodes. In spite of many favorable characteristics of ERT such as no radiation, low cost, and high temporal resolution compared to other tomography techniques, one of the major drawbacks of ERT is low spatial resolution due to the inherent ill-posedness of conventional image reconstruction algorithms. In fact, the number of known data is much less than that of the unknowns (meshes). Recalling that binary mixtures like two-phase flows consist of only two substances with distinct electrical conductivities, this work adopts the PSO algorithm for mesh grouping to reduce the number of unknowns. In order to verify the enhanced performance of the proposed method, several numerical tests are performed. The comparison between the proposed algorithm and conventional Gauss-Newton method shows significant improvements in the quality of reconstructed images.

퍼지 클러스터링 알고리즘을 이용한 타이어 접지면 패턴의 분류 (Tire Tread Pattern Classification Using Fuzzy Clustering Algorithm)

  • 강윤관;정순원;배상욱;김진헌;박귀태
    • 한국지능시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.44-57
    • /
    • 1995
  • 본논문에서는 GFI(Generalized Fuzzy Isodata)와 FI(Fuzzy Isodata) 알고리즘에 관한 이론을 고찰하고 이를 타이어 접지면 패턴 분류에 적용해 보았다. GFI 알고리즘은 FI 알고리즘의 일반화된 형태로서 분할된 군집에 대해서도 퍼지 분할 행렬(fuzzy partition matrix)을 고려해 다시 군집화(clustering)를 가능하게 하는 알고리즘이다. GFI 알고리즘을 사용하여 이진 트리를 구성함에 있어서 각 노드에서의 분할 여부, 즉 군잡화의 타당성(clustering validity) 점검 및 최종적인 이진 트리의 완성은 FDH(Fuzzy Divisve Hierarchical) 군집화알고리즘을 통해 이루어진다. 타이어 접지면에 대한 표준 특징량을 선정하거나 패턴 분류를 수행함에 있어서 이들 알고리즘은모두 우수한 성능을 가짐을 알 수 있었다. 패턴의 특징량으로는 전처리된 타이어 접지면 영상에 나타나는 윤곽선(edge)의 각도 성분을 선정하였으며 이렇게 선정된 특징량은 패턴의 특징을 잘 표현해 주는 유용한 정보를 가진 것으로 생각된다.

  • PDF

운전중 부분방전 진단시스템을 위한 복합 잡음제거 기법 (A Complex Noise Suppression Algorithm for On-line Partial Discharge Diagnosis Systems)

  • 이상화;윤영우;추영배;강동식
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.342-348
    • /
    • 2009
  • This paper introduces a novel denoising algorithm for the partial-discharge(PD) signals from power apparatuses. The developed algorithm includes three kinds of specific denoising sub-algorithms. The first sub-algorithm uses the fuzzy logic which classifies the noise types in the magnitude versus phase PD pattern. This sub-algorithm is especially effective in the rejection of the noise with high and constant magnitude. The second one is the method simply removing the pulses in the phase sections below the threshold count in the count versus phase pattern. This method is effective in removing the occasional high level noise pulses. The last denoising sub-algorithm uses the grouping characteristics of PD pulses in the 3D plot of the magnitude versus phase versus cycle. This special technique can remove the periodical noise pulses with varying magnitudes, which are very difficult to be removed by other denoising methods. Each of the sub-algorithm has different characteristic and shows different quality of the noise rejection. On that account, a parameter which numerically expresses the noise possessing degree of signal, is defined and evaluated. Using the parameter and above three sub-algorithms, an adaptive complex noise rejection algorithm for the on-line PD diagnosis system is developed. Proposed algorithm shows good performances in the various real PD signals measured from the power apparatuses in the Korean plants.

Socially Aware Device-to-multi-device User Grouping for Popular Content Distribution

  • Liu, Jianlong;Zhou, Wen'an;Lin, Lixia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권11호
    • /
    • pp.4372-4394
    • /
    • 2020
  • The distribution of popular videos incurs a large amount of traffic at the base stations (BS) of networks. Device-to-multi-device (D2MD) communication has emerged an efficient radio access technology for offloading BS traffic in recent years. However, traditional studies have focused on synchronous user requests whereas asynchronous user requests are more common. Hence, offloading BS traffic in case of asynchronous user requests while considering their time-varying characteristics and the quality of experience (QoE) of video request users (VRUs) is a pressing problem. This paper uses social stability (SS) and video loading duration (VLD)-tolerant property to group VRUs and seed users (SUs) to offload BS traffic. We define the average amount of data transmission (AADT) to measure the network's capacity for offloading BS traffic. Based on this, we formulate a time-varying bipartite graph matching optimization problem. We decouple the problem into two subproblems which can be solved separately in terms of time and space. Then, we propose the socially aware D2MD user selection (SA-D2MD-S) algorithm based on finite horizon optimal stopping theory, and propose the SA-D2MD user matching (SA-D2MD-M) algorithm to solve the two subproblems. The results of simulations show that our algorithms outperform prevalent algorithms.

Using Ant Colony Optimization to Find the Best Precautionary Measures Framework for Controlling COVID-19 Pandemic in Saudi Arabia

  • Alshamrani, Raghad;Alharbi, Manal H.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.352-358
    • /
    • 2022
  • In this paper, we study the relationship between infection rates of covid 19 and the precautionary measures and strict protocols taken by Saudi Arabia to combat the spread of the coronavirus disease and minimize the number of infected people. Based on the infection rates and the timetable of precautionary measures, the best framework of precautionary measures was identified by applying the traveling salesman problem (TSP) that relies on ant colony optimization (ACO) algorithms. The proposed algorithm was applied to daily infected cases data in Saudi Arabia during three periods of precautionary measures: partial curfew, whole curfew, and gatherings penalties. The results showed the partial curfew and the whole curfew for some cities have the minimum total cases over other precautionary measures. The gatherings penalties had no real effect in reducing infected cases as the other two precautionary measures. Therefore, in future similar circumstances, we recommend first applying the partial curfew and the whole curfew for some cities, and not considering the gatherings penalties as an effective precautionary measure. We also recommend re-study the application of the grouping penalty, to identify the reasons behind the lack of its effectiveness in reducing the number of infected cases.

Hybrid Neural Networks for Pattern Recognition

  • Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • 제9권6호
    • /
    • pp.637-640
    • /
    • 2011
  • The hybrid neural networks have characteristics such as fast learning times, generality, and simplicity, and are mainly used to classify learning data and to model non-linear systems. The middle layer of a hybrid neural network clusters the learning vectors by grouping homogenous vectors in the same cluster. In the clustering procedure, the homogeneity between learning vectors is represented as the distance between the vectors. Therefore, if the distances between a learning vector and all vectors in a cluster are smaller than a given constant radius, the learning vector is added to the cluster. However, the usage of a constant radius in clustering is the primary source of errors and therefore decreases the recognition success rate. To improve the recognition success rate, we proposed the enhanced hybrid network that organizes the middle layer effectively by using the enhanced ART1 network adjusting the vigilance parameter dynamically according to the similarity between patterns. The results of experiments on a large number of calling card images showed that the proposed algorithm greatly improves the character extraction and recognition compared with conventional recognition algorithms.

Directional texture information for connecting road segments in high spatial resolution satellite images

  • Lee, Jong-Yeol
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.245-245
    • /
    • 2005
  • This paper addresses the use of directional textural information for connecting road segments. In urban scene, some roads are occluded by buildings, casting shadow of buildings, trees, and cars on streets. Automatic extraction of road network from remotely sensed high resolution imagery is generally hindered by them. The results of automatic road network extraction will be incomplete. To overcome this problem, several perceptual grouping algorithms are often used based on similarity, proximity, continuation, and symmetry. Roads have directions and are connected to adjacent roads with certain angles. The directional information is used to guide road fragments connection based on roads directional inertia or characteristics of road junctions. In the primitive stage, roads are extracted with textural and direction information automatically with certain length of linearity. The primitive road fragments are connected based on the directional information to improve the road network. Experimental results show some contribution of this approach for completing road network, specifically in urban area.

  • PDF