• Title/Summary/Keyword: groundwater wells

Search Result 508, Processing Time 0.021 seconds

Earthquake Observation through Groundwater Monitoring: A case of M4.9 Odaesan Earthquake (지하수 모니터링을 통한 지진 감시 가능성: 중규모(M4.9) 오대산 지진의 관측)

  • Lee, Hyun-A;Kim, Min-Hyung;Hong, Tae-Kyung;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.38-47
    • /
    • 2011
  • Groundwater monitoring data from the National Groundwater Monitoring Stations, a total of 320 stations, were analyzed to identify the response of water level and quality to the Odaesan earthquake (M4.9) occurred in January 2007. Among the total of eight stations responded to the earthquake, five wells showed water-level decline, and in three wells, water level rose. In terms of recovery, water levels in four stations had recovered to the original level in five days, but not in the rest four wells. The magnitude of water-level change shows weak relations to the distance between the earthquake epicenter and the groundwater monitoring station. However, the relations to the transmissivities of monitored aquifer in the station with the groundwater change were not significant. To implement the earthquake monitoring system through the groundwater monitoring network, we still need to accumulate the long-term monitoring data and geostatistically analyze those with hydrogeological and tectonic factors.

The Importance of Monitoring Wells Maintenance in Improving Groundwater Quality (지하수 관측정의 시설개선에 따른 수질변화와 유지관리에 대한 연구)

  • Kim, Jeong-Woo;Seo, Yongkyo;Kim, Rak-Hyeon;Cheon, Jeong-Yong
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.283-295
    • /
    • 2014
  • Groundwater monitoring wells are important to maintain their performance for long term monitoring. The monitoring wells with extensive internal incrustation by clay adsorption were selected for this study. The performance of these monitoring wells was improved by pump washing, tube replacements for dedicated samplers, and well surging. After each improvement, the Mg, Mn, and Zn concentrations were increased. The results show that under these conditions, the monitoring wells must be carefully inspected at least once a year. Even in the case of no abnormal phenomenon like as internal incrustation, the monitoring wells need to be serviced at least once every four to five years to guarantee that they are effectively monitoring groundwater quality.

Estimating anaerobic reductive dechlorination of chlorinated compounds in groundwater by indigenous microorganisms

  • Park, Sunhwa;Kim, Deok Hyun;Yoon, JongHyun;Kwon, JongBeom;Choi, Hyojung;Kim, Ki-In;Han, Kyungjin;Kim, Moonsu;Shin, Sun-Kyoung;Kim, Hyun-Koo
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.85-95
    • /
    • 2022
  • Tetrachloroethylene (PCE) and trichloroethylene (TCE), critical pollutants to human health and groundwater ecosystems, are managed by groundwater quality standards (GQS) in South Korea. However, there are no GQSs for their by-products, such as cis-dichloroethylene (DCE) and vinyl chloride (VC) produced through the dechlorination process of PCE and TCE. Therefore, in this study, we monitored PCE, TCE, cis-DCE, and VC in 111 national groundwater wells for three years (2016 to 2018) to evaluate their distributions, a biological dechlorination possibility, and human risk assessment. The detection frequency of them was 30.2% for PCE, 45.1% for TCE, 43.9% for cis-DCE and 13.4% for VC. The four chlorinated compounds were commonly detected in 21 out of 111 wells. In the results of statistical analysis with 21 wells data, DO and ORP also had a negative correlation with four organic chlorinated compounds, while EC and sulfate has a positive correlation with the compounds. This indicates that the 21 wells were relatively met with suitable environments for a biological dechlorination reaction compared to the other wells. Finally, cis-DCE had a non-carcinogenic risk of 10-1 and the carcinogenic risk of VC was 10-6 or higher. Through this study, the distribution status of the four chlorinated compounds in groundwater in South Korea and the necessity of preparing plans to manage cis-DCE and VC were confirmed.

Hydraulic Watershed Classification and Analysis of Flow Characteristics of Groundwater on Jeju Island (제주도 지하수 유역의 적절성 평가와 수리학적 유역설정)

  • Kim, Min-Chul;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.28 no.4
    • /
    • pp.423-433
    • /
    • 2019
  • This study was carried out to identify the problems of the underground watersheds on Jeju Island, and to establish the hydraulic groundwater basin to be used as basis for the analysis of the groundwater model. In order to evaluate the adequacy of the groundwater basin on Jeju Island, a correlation analysis between elevation and groundwater level was conducted using data from 125 observation wells. The analysis, conducted with an elevation step of 100 m, exhibited values of R2 in the range 0.1653-0.8011. No clear correlation was observed between elevation and groundwater level. In particular, the eastern and western areas showed an inverse proportionality between elevation and groundwater level. The Kriging technique was used to analyze the underground water level data and to define the equipotential lines for all areas of Jeju Island. Eight groundwater watersheds were delineated by considering the direction of groundwater flow, the positions of the observation wells, and the long and short axes of the watersheds.

Rural Groundwater Monitoring Network in Korea (농어촌지하수 관측망)

  • Lee, Byung Sun;Kim, Young In;Choi, Kwang-Jun;Song, Sung-Ho;Kim, Jin Ho;Woo, Dong Kwang;Seol, Min Ku;Park, Ki Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2014
  • Rural groundwater monitoring network has been managed by Korea Rural Community Corporation (KRC) since 1998. The network consists of two kinds of subnetworks; rural groundwater management network (RGMN) and seawater intrusion monitoring network (SIMN). RGMN has been operated to promote a sound and sustainable development of rural groundwater within the concerned area for groundwater quality and quantity. SIMN has been operated to protect the crops against hazards by the saline water in coastal areas in which the shortage of irrigation water become a main problem for agriculture. Currently, a total of 283 monitoring wells has been installed; 147 wells in 79 municipalities for RGMN and 136 wells in 52 ones for SIMN, respectively. Two subnetworks commonly monitor three hydrophysical properties (groundwater level, temperature, and electric conductivity) every hour. Monitored data are automatically transferred to the management center located in KRC. Data are opened to the public throughout website named to be the Rural Groundwater Net (www.groundwater.or.kr). Annual reports involving well logging and hydrochemical data of RGMN and SIMN have been published and distributed to the rural water management office of each municipalities. In addition, anyone who concerns about RGMN an SIMN can freely download these reports throughout the Rural Groundwater Net as well.

Quantitative Evaluation for Improvement Effects of Performance After Mechanical Rehabilitation Treatments on Agricultural Groundwater Well (농업용 관정의 기계적 처리 이후 성능 개선 효과의 정량적 평가 사례)

  • Song, Sung-Ho;Lee, Byung-Sun;An, Jung-Gi
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.42-49
    • /
    • 2016
  • Step-drawdown pumping tests for identifying the improvement of groundwater well performance after rehabilitation treatments were conducted in three longstanding wells. Three selective mechanical treatment methods including power bubble, high-voltage electric pulse, and air surging were applied to these wells and the applicability of these methods to secure additional groundwater resources were evaluated quantitatively. Commonly, drawdown at final stage of stepdrawdown pumping tests after rehabilitation decreased by as much as 0.61~0.70 meters compared to those before rehabilitation. In addition, final specific drawdown values of three wells increased from 9% to 14% after rehabilitation. Formation loss coefficient and well loss coefficient decreased to 6.1% and 60.6%, respectively, indicating some clogging materials by precipitation/corrosion/microbe within pores of aquifer materials, gravel packs, and screens were effectively removed by applied methods. Decrease of formation loss coefficient was higher in the well applied by the power bubble method meanwhile high-voltage electric pulse method demonstrated the higher decrease of well loss coefficient. Additionally secured groundwater amounts after rehabilitation ranged from 23.3 to 32.1 m3/day, which account for 8~16% of initially developed pumping rates of the wells. From the results of this study, the effective selection of rehabilitation treatments considering aquifer characteristics are expected to contribute to secure groundwater resources for irrigation as well as to plan systematic management program for groundwater resources in rural area.

Evaluation of Regional Characteristics Using Time-series Data of Groundwater Level in Jeju Island (시계열 자료를 이용한 제주도 지하수위의 지역별 특성 분석)

  • Song, Sung-Ho;Choi, Kwang-Jun;Kim, Jin-Sung
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.609-623
    • /
    • 2013
  • Fluctuation patterns of groundwater level as a factor that reflects the characteristics of groundwater system can be categorized as the various types of aquifer with the time-series data. Time-series data on groundwater level obtained from 115 monitoring wells in Jeju Island were classified according to variation types, which were largely affected by rainfall(Dr), rainfall and pumping(Drp), and unknown cause(De). Analysis results indicate that 106 wells belong to Dr and Drp and the ratio of the wells with the wide range of fluctuation in the western and northern regions was higher than that in the eastern and southern regions. From the results that Drp is relatively higher than Dr in the western region which has the largest agricultural areas, groundwater level fluctuations may be affected significantly due to the intensive agricultural use. Non-parametric trend analysis results for 115 monitoring wells show that the increasing and decreasing trends as the ratio of groundwater levels were 14.8% and 22.6%, respectively, and groundwater levels revealed to be increased in the western, southern and northern regions excluding eastern region. Results of correlation analysis that cross-correlation coefficients and the time lags in the eastern and western regions are relatively high and short, respectively, indicate that the rainfall recharge effect in these regions is relatively larger due to the gentle slope of topography compared to that in the southern and northern regions.

The Strategy for the Advancement of Groundwater Management in Korea (국내 지하수 통합관리 선진화 전략)

  • Kang, Sunggoo;Kim, Jiwook;Choi, Yongjun;Park, Minyoung;Park, Hyunjin;Lee, Jinkwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.36-40
    • /
    • 2022
  • To respond to rapidly changing water circumstances such as climate change, drought, etc., the korean government (MOE) established four advanced strategies for integrated groundwater management. The first strategy is watershed-based management of groundwater. The second strategy is total quantity management of groundwater including improvement of groundwater preservation area policy and procedure of investigation for groundwater influence area, additional construction of groundwater dam, installation of large-scale public wells, extention of spilled groundwater use. The third strategy is prevention of groundwater contamination including expansion of monitoring wells, introducing declaration of groundwater contamination. The last strategy is advancement of groundwater information management including integrated management of data, setting up a big-data based open platform. The above-mentioned four strategies will be reflected in the 4th National Groundwater Management Plan to secure implementation power, and it is expected to laid the foundation for advanced and rational groundwater management system.

Aquifer Characterization in Cheon-an area by using long-term groundwater-level monitoring data

  • 원이정;김형수;구민호;김덕근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.565-569
    • /
    • 2003
  • One-year-long groundwater-level data have been collected from 18 wells in Cheon-an area. The result of barometric efficiency, autocorrelation, cross-correlation and statistical distribution evaluated from the measurement data shows that groundwater-level measurements from observation wells are the principal source of information about aquifer characteristics. Data from WA-2 has high barometric efficiency as well as steady decreasing auto-correlation coefficient, which means nonleaky confined aquifer, Most aquifers in this study show the unconfined properties so that barometric efficiencies are mostly low and the coefficients of cross-correlation between groundwater-level and precipitation are commonly high. This study showed that the long-term groundwater-level monitoring data without artificial stress such as pumping would give accurate information about aquifer characteristics.

  • PDF

Estimation of Groundwater Recharge in Sukhuma District of Laos

  • VONGPHACHANH, SINXAY
    • Water for future
    • /
    • v.52 no.8
    • /
    • pp.28-33
    • /
    • 2019
  • This study is presented to estimate groundwater recharge in Sukhuma District of Southern Laos. The groundwater recharge is estimated by using the water table fluctuation method from observation groundwater levels at eleven domestic wells and five paired observation wells (shallow and deep). The results show that a value of specific yield for the shallow fractured sandstone aquifer in the Sukhuma District is quantified at approximately 0.03, Groundwater recharge for 2012-13 and 2015-16 is estimated at 5% (118 mm) and 4% (95 mm) of annual rainfall. respectively. The results of the current study provide useful basic information for future groundwater resource management planning in Sukhuma District. The methods applied in this study may be also useful for studying the groundwater recharge in regions with limited field data.