• Title/Summary/Keyword: groundwater mixing

Search Result 171, Processing Time 0.021 seconds

하수처리장 방류수에 용존된 무기화학종의 연속계측자료를 이용한 하천유량, 유속 및 방류량 추적

  • Kim, Gang-Ju;Han, Chan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.3-6
    • /
    • 2001
  • Various Parameters such as stream velocities, discharges, and dispersion coefficients of dissolved solutes were estimated by fitting 1-D nonreactive solute transport model to the time-series chemistry data. This study was done for the reaches of Mankyung River lower than the Jeonju Wastewater Treatment Plant (Jeonju WTP). Korea. Concentrations of inorganic chemicals in the stream waters are strongly influenced by mixing with the chemically distinct effluent from Jeonju WTP. Sulfate, EC. and the total major cation were proved to be nearly conservative in the study area front their relationships with chloride, the conservative chemical species. The solute transport model was constrained to the time-series concentrations for these 4 conservative species. The variations of concentration and discharge of Jeonju WTP were used as input parameters, and the stream velocities, dispersion coefficients, and concentrations and discharges of some inflows were optimized. The differences between the observed arid simulated values for alkalinities and nitrates are inversely correlated and show diurnal fluctuations, indicating the photosynthesis. The parameters obtained front this mode] range from 550 to 774 kcmd (stream discharge at the outlet of the study area), from 0.06 to 0.10 m/sec (flow velocity), and from 0.7 to 6.4 m$^2$/sec (dispersion coefficient). The history of Jeonju WTP discharge was well predicted when optimized, indicating the validity of the model results.

  • PDF

부산석회를 활용한 휴ㆍ폐 석탄광산 폐기물에서 유출된 침출수의 안정화

  • 김휘중;양재의;옥용식;유경열;박병길;이재영;전상호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.48-58
    • /
    • 2004
  • Objectives of this research were to reclaim the coal mine overburdens using the lime waste cake from the soda ash production by stabilizing the overburden slopes, introducing neutralizing the AMD from runoff and leachate in an attempt find the sink to dispose the lime wastes and alleviate the environmental problems caused by the closed coal mines. The pH changes of the runoff and leachate collected in the tanks at the end of the experimental plots, averaged over measurements from April to August, indicated that the runoff pH of the coal overburden was 4.3 but increased significantly to the ranges of 6.7 to 7.1 with treatments of tile calcites and lime wastes. This might be related with the decreases in Fe concentrations in the runoff and leachate from the coal overburdens. The Fe concentrations in tile runoff seemed to increase with the amounts of precipitation. Results demonstrated that the amounts of lime wastes at 25% of the lime requirement were sufficient for neutralizing the acidic coal overburden. Either layering between the coal waste and topsoil or mixing with coal overburdens could be adopted as the lime waste treatment method. The lime wastes from the soda ash production might have a potential to be recycled for the reclamation of the abandoned coal mines to alleviate the environmental problems associated with coal mine waste.

  • PDF

Mechanism on Extraction of Heavy Metals from Soil by Ultrasonication (초음파 조사에 의한 토양내 중금속 추출 기작 연구)

  • Shin, Yeon-Jun;Lee, Cha-Dol;Yoo, Jong-Chan;Yan, Jung-Seok;Kim, Ho-Sub;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the mechanisms on ultrasonication enhanced metals extraction were investigated compared with the conventional washing technique. We hypothesized the mechanisms on enhanced extraction of ultrasonication: ultrasonication increased the temperature of soil slurry and decreased average particle size of soil due to breakdown of soil aggregate. Actually, the ultrasonication increased the temperature of soil slurry to $60^{\circ}C$ in this study, and the increase in the temperature enhanced the metal extraction to 15-20% even in the conventional simple mixing. The conventional washing technique decreased average size of soil particles because of breakdown of soil aggregate, and the ultrasonication decreased the size more than that of washing. The breakdown of soil aggregate improved the contact between metals and washing agent, which enhanced the extraction of metals in the ultrasonication. Therefore, we concluded that the main mechanisms of ultrasonication are increase in the temperature and breakdown of the soil aggregate. Finally, the ultrasonicaiton increased the extractability of metals upto 40% compared to conventional washing technique.

Technical Procedure for Identifying the Source of Nitrate in Water using Nitrogen and Oxygen Stable Isotope Ratios (질소 및 산소 안정동위원소 활용 수계 질산성 질소 오염원 판별을 위한 기술 절차 제안)

  • Kim, Kibeum;Chung, Jaeshik;Lee, Seunghak
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.87-98
    • /
    • 2022
  • This study aims to prepare a technical protocol for identifying the source of nitrate in water using nitrogen (δ15N) and oxygen (δ18O) stable isotope ratios. The technical processes for nitrate sources identification are composed of site investigation, sample collection and analysis, isotope analysis, source identification using isotope characteristics, and source apportionment for multiple potential sources with the Bayesian isotope mixing model. Characteristics of various nitrate potential sources are reviewed, and their typical ranges of δ15N and δ18O are comparatively analyzed and summarized. This study also summarizes the current knowledge on the dual-isotope approach and how to correlate the field-relevant information such as land use and hydrochemical data to the nitrate source identification.

In-situ Stabilization of Hydrophobic Organic Contaminants in Sediment by Activated Carbon Amendment: Working Principles (활성탄 주입을 통한 퇴적물 내 소수성 유기오염물질 원위치 안정화 기술: 작동 원리)

  • LEE, Hyeonmin;JUNG, Jihyeun;CHOI, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • In-situ activated carbon (AC) amendment is a promising remediation technique for the treatment of sediment impacted by hydrophobic organic contaminants (HOCs). Since its first proposal in the early 2000s, the remediation technique has quickly gained acceptance as a feasible alternative among the scientific and engineering communities in the United States and northern Europe. This review paper aims to provide an overview on in-situ AC amendment for the treatment of HOC-impacted sediment with a major focus on its working principles. We began with an introduction on the practical and scientific background that led to the proposal of this remediation technique. Then, we described how the remediation technique works in a mechanistic sense, along with discussion on two modes of implementation, mechanical mixing and thin-layer capping, that are distinct from each other. We also discussed key considerations involved in establishing a remedial goal and performing post-implementation monitoring when this technique is field-applied. We concluded with future works necessary to adopt and further develop this innovative sediment remediation technique to ongoing and future sediment contamination concerns in Korea.

Lithium Distribution in Thermal Groundwater: A Study on Li Geochemistry in South Korean Deep Groundwater Environment (온천수 내 리튬 분포: 국내 심부 지하수환경의 리튬 지화학 연구)

  • Hyunsoo Seo;Jeong-Hwan Lee;SunJu Park;Junseop Oh;Jaehoon Choi;Jong-Tae Lee;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.729-744
    • /
    • 2023
  • The value of lithium has significantly increased due to the rising demand for electric cars and batteries. Lithium is primarily found in pegmatites, hydrothermally altered tuffaceous clays, and continental brines. Globally, groundwater-fed salt lakes and oil field brines are attracting attention as major sources of lithium in continental brines, accounting for about 70% of global lithium production. Recently, deep groundwater, especially geothermal water, is also studied for a potential source of lithium. Lithium concentrations in deep groundwater can increase through substantial water-rock reaction and mixing with brines. For the exploration of lithim in deep groundwater, it is important to understand its origin and behavior. Therefore, based on a nationwide preliminary study on the hydrogeochemical characteristics and evolution of thermal groundwater in South Korea, this study aims to investigate the distribution of lithium in the deep groundwater environment and understand the geochemical factors that affect its concentration. A total of 555 thermal groundwater samples were classified into five hydrochemical types showing distinct hydrogeochemical evolution. To investigate the enrichment mechanism, samples (n = 56) with lithium concentrations exceeding the 90th percentile (0.94 mg/L) were studied in detail. Lithium concentrations varied depending upon the type, with Na(Ca)-Cl type being the highest, followed by Ca(Na)-SO4 type and low-pH Ca(Na)-HCO3 type. In the Ca(Na)-Cl type, lithium enrichment is due to reverse cation exchange due to seawater intrusion. The enrichment of dissolved lithium in the Ca(Na)-SO4 type groundwater occurring in Cretaceous volcanic sedimentary basins is related to the occurrence of hydrothermally altered clay minerals and volcanic activities, while enriched lithium in the low-pH Ca(Na)-HCO3 type groundwater is due to enhanced weathering of basement rocks by ascending deep CO2. This reconnaissance geochemical study provides valuable insights into hydrogeochemical evolution and economic lithium exploration in deep geologic environments.

Biodegradation Kinetics of Diesel in a Wind-driven Bioventing System

  • Liu, Min-Hsin;Tsai, Cyuan-Fu;Chen, Bo-Yan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.5
    • /
    • pp.8-15
    • /
    • 2016
  • Bioremediation, which uses microbes to degrade most organic pollutants in soil and groundwater, can be used in solving environmental issues in various polluted sites. In this research, a wind-driven bioventing system is built to degrade about 20,000 mg/kg of high concentration diesel pollutants in soil-pollution mode. The wind-driven bioventing test was proceeded by the bioaugmentation method, and the indigenous microbes used were Bacillus cereus, Achromobacter xylosoxidans, and Pseudomonas putida. The phenomenon of two-stage diesel degradation of different rates was noted in the test. In order to interpret the results of the mode test, three microbes were used to degrade diesel pollutants of same high concentration in separated aerated batch-mixing vessels. The data derived thereof was input into the Haldane equation and calculated by non-linear regression analysis and trial-and-error methods to establish the kinetic parameters of these three microbes in bioventing diesel degradation. The results show that in the derivation of μm (maximum specific growth rate) in biodegradation kinetics parameters, Ks (half-saturation constant) for diesel substance affinity, and Ki (inhibition coefficient) for the adaptability of high concentration diesel degradation. The Ks is the lowest in the trend of the first stage degradation of Bacillus cereus in a high diesel concentration, whereas Ki is the highest, denoting that Bacillus cereus has the best adaptability in a high diesel concentration and is the most efficient in diesel substance affinity. All three microbes have a degradation rate of over 50% with regards to Pristane and Phytane, which are branched alkanes and the most important biological markers.

Development of a Numerical Modeling Technique for Predicting Groundwater flow and Heat Transport in a Standing Column Well (수주지열정의 지하수 유동 및 지열 이동 예측을 위한 수치 모델링 기법 개발)

  • Park, Seongmin;Hwang, Gisub;Moon, Jongphil;Kihm, Jung-Hwi
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.461-471
    • /
    • 2016
  • Numerical modules based on a conventional thermo-hydrological numerical model, TOUGH2, are developed to provide a numerical modeling technique for a standing column well (SCW). Cooling and heating operations for two different types of SCW are then simulated using these modules. Modeling showed these operations to be significantly influenced by heat exchange and fluid mixing between the SCW and the adjacent geologic formation and groundwater. The results also reveal that heat exchange between the oppositely flowing outflow and inflow in the PVC or PE pipe and the SCW borehole is an important factor. Overall, the numerical modeling technique developed here can reasonably simulate fluid flow and heat transport phenomena in the complex internal structures of a SCW. The proposed technique can be used practically for the quantitative analysis of heat exchange in a SCW at the design, construction, and operation stages.

Estimation of the hydraulic conductivity profile in fractured rocks using the borehole flowmeter test (시추공 유속 검층을 이용한 암반 대수층의 수리전도도 분포 산정)

  • 구민호;차장환
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.257-271
    • /
    • 2002
  • The vertical distribution of hydraulic conductivity of 3 boreholes located at Kongju National University was estimated by the ambient flow and the pump-induced flow measurements using a heat-pulse flowmeter. The ambient flow measurements showed that a great amount of groundwater (1~2 m$^3$/day) flowed in the boreholes through the conductive fractures. The analyzed conductivity profiles we similar to those of the packer test performed for the same boreholes. The conductive fractures in which the differential net flow changed greatly could be identified by the BIPS logging. The water-quality logging data showed that quality of groundwater changed abruptly at some depths of the boreholes. This change in water quality can be attributed to the presence of conductive fractures that have resulted in the mixing of groundwater of different quality flowing in different fracture channels. However, compared to the flowmeter test, the water-quality logging showed low capability in identifying locations of conductive fractures.

Evolution and Origin of the Geothermal Waters in the Busan Area, Korea: 1. Cooling and Dilution by Groundwater Mixing after Heated Seawater-Rock Interaction (부산지역 지열수의 기원과 진화: 1.가열된 해수-암석 반응과 지하수의 혼입에 따른 희석과 냉각)

  • 성규열;박맹언;고용권;김천수
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.447-460
    • /
    • 2001
  • The geothermal waters from the Busan area belong to Na-CI type and are characterized by much higher EC (921 ~6,520${\mu}$S/cm) and TDS (608-3,390 mg/L) than other geothermal waters in Korea. The concentration of majorions shows a weakly positive relationship with temperature except for Mg ion. The concentrations of the major cat ions have the order of Na>Ca>K>Mg. Ca ion is enriched and Mg ion is depleted compared with seawater. All Br concentrations of geothermal water are lower than those of seawater, showing a positive relationship with temperature. Generally geochemical characteristics of geothermal waters of the Busan area indicate that these waters have relatively increased Ca and Sr contents and depleted Mg, Na and K contents caused by seawater interaction with wall rock at depth during deep circulation of seawater. Base on the relationship between major ions and temperature, saline geothermal waters are diluted and are cooled by mixing of groundwaters during ascent. Isotope study and reaction path modeling of the overall geochemical system are required in order to better quantify the evolution and origin of geothermal waters in the Busan area.

  • PDF