• Title/Summary/Keyword: groundwater head

Search Result 134, Processing Time 0.022 seconds

Assessment of the Effect of Sand Dam on Groundwater Level: A Case Study in Chuncheon, South Korea

  • Yifru, Bisrat;Kim, Min-Gyu;Chang, Sun Woo;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.119-129
    • /
    • 2020
  • Sand dam is a successful water harvesting method in mountainous areas with ephemeral rivers. The success is dependent on several factors including material type, hydrogeology, slope, riverbed thickness, groundwater recharge, and streamflow. In this study, the effect of a sand dam on the groundwater level in the Chuncheon area, South Korea was assessed using the MODFLOW model. Using the model, multiple scenarios were tested to understand the groundwater head before and after the construction of the sand dam. The effect of groundwater abstraction before and after sand dam construction and the sand material type were also assessed. The results show, the groundwater level increases substantially after the application of a sand dam. The comparison of model outputs, simulated groundwater head before and after sand dam application with and without pumping well, shows a clear difference in the head. The material type has also an effect on the groundwater head. As the conductivity of the material increases, the head showed a significant rise.

Analysis of the Hydraulic Head Affected by Stage of Tidal Rivers (감조구역에서 지하수 수두의 거동 해석)

  • 김민환;이재형
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 1995
  • In the tidal compartment, the hydraulic head is affected by the stage of tidal rivers. For groundwater or construct works, head variation of groundwater should be considered in zone of this aquifer. A numerical analysis is performed which has an 1-dimemsional explicit finite difference scheme to show the head variation of groundwater with tidal stage and hydraulic conductivity, etc. The stability of the numerical scheme is validated by using the analytic solution. The head variation of groundwater is observed for various tidal amplititude and hydraulic conductivity, mean hydraulic gradient and pumping at any point. The range of influence corresponding to the parameters used in this study is about 60m. This value is not beyond a wave length (equation omitted). There was a pumping at a constant rate out of aquifers affected by tide and not affected by tide. Because pumping head in aquifer affected by tide is short, the expense of electric power is economized in this zone. These results are applicable to trace of contaminant transport, efficient operation of groundwater, and examination of the safety and stability of works in the tidal compartment.

  • PDF

Applications of Diverse Data Combinations in Subsurface Characterization using D-optimality Based Pilot Point Methods (DBM)

  • Jung, Yong;Mahinthakumar, G.
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.45-53
    • /
    • 2013
  • Many cases of strategically designed groundwater remediation have lack of information of hydraulic conductivity or permeability, which can render remediation methods inefficient. Many studies have been carried out to minimize this shortcoming by determining detailed hydraulic information either through direct or indirect measurements. One popular method for hydraulic characterization is the pilot point method (PPM), where the hydraulic property is estimated at a small number of strategically selected points using secondary measurements such as hydraulic head or tracer concentration. This paper adopted a D-optimality based pilot point method (DBM) developed previously for hydraulic head measurements and extended it to include both hydraulic head and tracer measurements. Based on different combinations of trials, our analysis showed that DBM performs well when hydraulic head is used for pilot point selection and both hydraulic head and tracer measurements are used for determining the conductivity values.

Groundwater Movement Analysis Using the WINFLOW Model (WINFLOW 모델을 이용한 지하수 유동해석)

  • 최윤영;안승섭;김재광
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.103-115
    • /
    • 2003
  • This study examines groundwater movement system analysis and movement forecast algorithm using finite element method. The target is Cheongha-myeon area, Bukgu, Pohang-city which has many difficulties in water supply during drought period. From the comparison of the differences between obtained values by WINFlOW model and observed values, it is thought that groundwater head distribution under steady flow is reflected well at the level of reliability Groundwater movement of study area shows stable pattern from western watershed to eastern coastal area while flow path is dense and steep in the center of the coastal area. The results of particle tracing for each well show a comparatively straight line from the western boundary side to the observation position at the upper area of the well, and are analyzed as it diffuses according to getting closer to the coast at the lower area of the well. The result of effect circle examination attendant on pumping amount in study area shows variation tendency that groundwater head decreases at the side and the lower area more than at the upper area of the well when groundwater flows from west to east(coast). As mentioned above, satisfactory results of groundwater movement analysis using WINFlOW model, two dimensional groundwater movement analysis model, are obtained through the great decrease of physical uncertainty of groundwater movement system.

Investigation into circulation of ground water by air sparging (Air sparging에 의한 지하수 순환에 관한 연구)

  • 이준희;강구영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.232-235
    • /
    • 1998
  • Air sparging system is a kind of in-situ bioremediation method in the contaminated ground water. When Air sparging, the both of water circulation and oxygen transfer happend in the same time. The hydraulic differential head is zero at the middle height of well, is negative below the height and is possitive above the height. Hydroraulic head gradient is proportioned to air superficial velocity in the well. But over 24m/min of the superficial velocity, the hydraulic head gradient increase little.

  • PDF

Groundwaterflow analysis of discontinuous rock mass with probabilistic approach (통계적 접근법에 의한 불연속암반의 지하수 유동해석)

  • 장현익;장근무;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.30-38
    • /
    • 1996
  • A two dimensional analysis program for groundwater flow in fractured network was developed to analyze the influence of discontinuity characteristics on groundwater flow. This program involves the generation of discontinuities and also connectivity analysis. The discontinuities were generated by the probabilistic density function(P.D.F.) reflecting the characteristics of discontinuities. And the fracture network model was completed through the connectivity analysis. This program also involves the analysis of groundwater flow through the discontinuity network. The result of numerical experiment shows that the equivalent hydraulic conductivity increased and became closer to isotropic as the density and trace length increased. And hydraulic head decreased along the fracture zone because of much water-flow. The grouting increased the groundwater head around cavern. An analysis of groundwater flow through discontinuity network was performed around underground oil storage cavern which is now under construction. The probabilistic density functions(P.D.F) were obtained from the investigation of the discontinuity trace map. When the anisotropic hydraulic conductivity is used, the flow rate into the cavern was below the acceptable value to maintain the hydraulic containment. But when the isotropic hydraulic conductivity is used, the flow rate was above the acceptable value.

  • PDF

유구지역에서의 누적강수량과 지하수수위강하를 이용한 지하수함양율 추정

  • 이주영;이기철;정형재;정성욱
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.515-518
    • /
    • 2003
  • Groundwater recharge rate can be estimated from groundwater head rebound due to rainfall. Groundwater level changes are monitored for 10 months at Yugu area. Difference between two recharge rates calculated by rainfall and by effective rainfall is 1.1%~1.6%. Since this method ignores soil water percolation during groundwater level regression, the actual recharge rate may be higher than estimated one by cumulative rainfall and groundwater level change.

  • PDF

An Integrated Surface Water-Groundwater Modeling by Using Fully Combined SWAT MODFLOW Model (완전연동형 SWAT-MODFLOW 모형을 이용한 지표수-지하수 통합 유출모의)

  • Kim, Nam Won;Chung, Il Moon;Won, Yoo Seung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.481-488
    • /
    • 2006
  • This paper suggests a novel approach of integrating the quasi-distributed watershed model SWAT with the fully-distributed groundwater model MODFLOW. Since the SWAT model has semi distributed features, its groundwater components hardly considers distributed parameters such as hydraulic conductivity and storage coefficient. Generating a detailed representation of groundwater recharge, head distribution and pumping rate is equally difficult. To solve these problems, the method of exchanging the characteristics of the hydrologic response units (HRUs) in SWAT with cells in MODFLOW by fully combined manner is proposed. The linkage is completed by considering the interaction between the stream network and the aquifer to reflect boundary flow. This approach is provisionally applied to Gyungancheon basin in Korea. The application demonstrates a combined model which enables an interaction between saturated zones and channel reaches. This interaction plays an essential role in the runoff generation in the Gyungancheon basin. The comprehensive results show a wide applicability of the model which represents the temporal-spatial groundwater head distribution and recharge.

Stochastic Simulation of Groundwater Flow in Heterogeneous Formations: a Virtual Setting via Realizations of Random Field (불균질지층내 지하수 유동의 확률론적 분석 : 무작위성 분포 재생을 통한 가상적 수리시험)

  • Lee, Kang-Kun
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.90-99
    • /
    • 1994
  • Heterogeneous hydraulic conductivity in a flow domain is generated under the assumption that it is a random variable with a lognormal, spatially-correlated distribution. The hydraulic head and the conductivity in a groundwater flow system are represented as a stochastic process. The method of Monte Carlo Simulation (MCS) and the finite element method (FEM) are used to determine the statistics of the head and the logconductivity. The second moments of the head and the logconductivity indicate that the cross-covariance of the logconductivity with the head has characteristic distribution patterns depending on the properties of sources, boundary conditions, head gradients, and correlation scales. The negative cross-correlation outlines a weak-response zone where the flow system is weakly responding to a stress change in the flow domain. The stochastic approach has a potential to quantitatively delineate the zone of influence through computations of the cross-covariance distribution.

  • PDF