• Title/Summary/Keyword: groundwater flow modeling

Search Result 148, Processing Time 0.021 seconds

Development of the GIS Based Pre- and Post-Processing Tool for the Visual MODFLOW Groundwater Flow Modeling (Visual MODFLOW 지하수 유동 모델링을 위한 GIS 기반 전ㆍ후처리기 개발)

  • Kim, Man-Kyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.2
    • /
    • pp.65-79
    • /
    • 2003
  • In this study GIS based pre- and post-processing tool for the Visual MODFLOW that is specific software to model groundwater flow is developed. This tool not only makes input data scientifically but also manages input and output data in terms of the groundwater flow analysis. In addition it can storage project products systematically into Oracle database. The most characteristic figure of this processing tool is to provide the module, which automatically or semi automatically develops various grid cell sizes using GIS ArcView and also produces DXF files reflecting various boundary conditions in the modeling zone. In particular, eminences of this research are to create 3 dimensional hydrogeological structures with 2 dimensional GIS ArcView and to conduct pre- and post- processing along with same topology and data format of the MODFLOW.

  • PDF

A Study on Groundwater Flow Modeling in the Fluvial Aquifer Adjacent to the Nakdong River, Book-Myeon Area, Changwon City (창원시 북면 낙동강 주변 하성퇴적층의 지하수유동 모델링 연구)

  • Hamm Se-Yeong;Cheong Jae-Yeol;Kim Hyoung-Su;Hahn Jeong-Sang;Ryu Su-Hee
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.499-508
    • /
    • 2004
  • Changwon City first constructed riverbank filtration plants in Book-Myeon and Daesan-Myeon in Korea in the year 2001. This study evaluated hydrogeological characteristics and groundwater flow simulation between the Nakdong River and the fluvial aquifers adjacent to the river in Book-Myeon, Changwon City. The groundwater simulation calculated the influx rate from the Nakdong River and the fluvial aquifers to pumping wells through the riverbank filtration system. The groundwater flow model utilized drilling, grain size analysis, pumping test, groundwater level measurements, river water discharge and rainfall data. Hydraulic heads calculated by the steady-state model closely matched measured heads in pumping and observation wells. According to the transient flow model, using a total pumping amount of 14,000 $m^3$/day, the flux into the pumping wells from the Nakdong River accounts for 8,390 $m^3$/day (60%), 590 $m^3$/day (4%) is from the aquifer in the rectilinea. direction to the Nakdong River, and 5,020 $m^3$/day (36%) is from the aquifer in the parallel direction to the Nakdong River. The particle tracking analysis shows that a particle from the Nakdong River moves toward the pumping wells at a rate of about 1.85 m/day and a particle from the aquifer moves toward the pumping wells at a rate of about 0.75 m/day. This study contributes to surface water/groundwater management modeling, and helps in understanding, how seasonal change affects pumping rates, water quality, and natural recharge.

Groundwater Flow and Water Budget Analyses using HydroGeoSphere Model at the Facility Agricultural Complex (시설농업단지에서 HydroGeoSphere 모델을 이용한 지하수 유동 및 물수지 분석)

  • Kang, Dong-hwan;So, Yoon Hwan;Kim, Il Kyu;Oh, Se-bong;Kim, Suhong;Kim, Byung-Woo
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.313-322
    • /
    • 2017
  • The purpose of this study is to estimate the surface and subsurface flows through the modelling of the model area and facility agricultural complex, and to calculate the groundwater recharge rate through water budget analysis. From results of surface flow modeling, the surface water is flowed to a depth of about 1 to 5 meters from the upper region (northeast) to the lower region (southeast) of the Miryang River. At the M01 point (upper), the observed surface water flux and the model surface water flux are consistent. At the M02 points (lower), the observed surface water flux and the model surface water flux are a difference of 1%. From results of subsurface flow modeling, the depth of groundwater is similar to elevation in the river and higher to the forest area. Ground water depth considering groundwater pumping is that the model values appears higher than the observed values to be within 1.5 m. From results of surface-subsurface integrated modeling, the groundwater recharge area is estimated about 90% of the model area, and the groundwater recharge rate is estimated $1.92{\times}10^5m^3/day$. From results of annual water budget analysis, the groundwater recharge rate per unit area is estimated to be 503.9 mm/year, and average annual rainfall is estimated at around 39%.

Characterization of Fracture Transmissivity for Groundwater Flow Assessment using DFN Modeling (분리단열망개념의 지하수유동해석을 위한 단열투수량계수의 정량화 연구)

  • 배대석;송무영;김천수;김경수;김증렬
    • The Journal of Engineering Geology
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 1996
  • The fracture transmissivity($T_f$) is the most important parameter of fracture in assessing groundwater flow in fractured rock masses by using the DFN(Discrete Fracture Network) modeling. $T_f$, the most sensitive parameter m DFN modeling, is dependent upon aperture, size and filling characteristics of each fracture set. In the field test, the accuracy of $T_f$ can be increased with Borehole Acoustic Scanning (Televiewer) and Fixed Interval Length(FIL) test in constant head. $T_f$ values measured from FIL test was modified and estimated by each fracture set on the basis of the Cubic Law and the information of aperture and filling characteristics obtained from Televiewer. The modified $T_f$ results in the increase of confidence and reliability of modeling results including the amount of tunnel inflow.And, this approach would reduce the uncertaintity of the assessment for groundwater flow in fractured rock masses using the DFN modeling.

  • PDF

Development of a Numerical Modeling Technique for Predicting Groundwater flow and Heat Transport in a Standing Column Well (수주지열정의 지하수 유동 및 지열 이동 예측을 위한 수치 모델링 기법 개발)

  • Park, Seongmin;Hwang, Gisub;Moon, Jongphil;Kihm, Jung-Hwi
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.461-471
    • /
    • 2016
  • Numerical modules based on a conventional thermo-hydrological numerical model, TOUGH2, are developed to provide a numerical modeling technique for a standing column well (SCW). Cooling and heating operations for two different types of SCW are then simulated using these modules. Modeling showed these operations to be significantly influenced by heat exchange and fluid mixing between the SCW and the adjacent geologic formation and groundwater. The results also reveal that heat exchange between the oppositely flowing outflow and inflow in the PVC or PE pipe and the SCW borehole is an important factor. Overall, the numerical modeling technique developed here can reasonably simulate fluid flow and heat transport phenomena in the complex internal structures of a SCW. The proposed technique can be used practically for the quantitative analysis of heat exchange in a SCW at the design, construction, and operation stages.

Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage

  • Aalianvari, A.
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.671-683
    • /
    • 2017
  • Groundwater control is a significant issue in most underground construction. An estimate of the inflow rate is required to size the pumping system, and treatment plant facilities for construction planning and cost assessment. An estimate of the excavation-induced drawdown of the initial groundwater level is required to evaluate potential environmental impacts. Analytical and empirical methods used in current engineering practice do not adequately account for the effect of the jointed-rock-mass anisotropy and heterogeneity. The impact of geostructural anisotropy of fractured rocks on tunnel inflows is addressed and the limitations of analytical solutions assuming isotropic hydraulic conductivity are discussed. In this paper the unexcavated Zagros tunnel route has been classified from groundwater flow point of view based on the combination of observed water inflow and numerical modeling results. Results show that, in this hard rock tunnel, flow usually concentrates in some areas, and much of the tunnel is dry. So the remaining unexcavated Zagros tunnel route has been categorized into three categories including high Risk, moderately risk and low risk. Results show that around 60 m of tunnel (3%) length can conduit the large amount of water into tunnel and categorized into high risk zone and about 45% of tunnel route has moderately risk. The reason is that, in this tunnel, most of the water flows in rock fractures and fractures typically occur in a clustered pattern rather than in a regular or random pattern.

A Case Study on Dry Stream Protection Design Using Causes Analysis of the Dry Stream Weakness Section (하천 건천화 취약구간 원인 분석을 통한 방지 대책: 설계사례)

  • Yoo, Chan-Ho;Park, Se-Young;Kang, Moon-Gu;Hwang, Jung-Soon;Oh, Byung-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1494-1501
    • /
    • 2008
  • Recently, the demand of water resources is constantly increasing due to the substantial increase of population, economy, and living standard. However, it is expected that the water resources should undergo serious problems of poor quality of water as well as shortage of water supply in the near future. Additionally, thoughtless groundwater development have caused to dry river and stream. In this study, the effectiveness of dry stream protection plan is evaluated by using 3-D groundwater flow modeling for the study area which is located in Namyangju of Kyoungi Province. Aquifer tests are performed to obtain the input data of the model. To analyze causes of dry stream using modeling results that water balance is analyzed for situations of before and after closing the wells.

  • PDF

A Study on the Installation Method of PRB by Controlling Groundwater Flow in Hybrid Funnel and Gate (하이브리드 Funnel and Gate 지하수 흐름제어를 통한 반응벽체 설치 연구)

  • Tae Yeong Kim;Jeong Yong Cheon;Myeong Jae Yi;Yong Hoon Cha;Seon Ho Shin;Meong Do Jang;Jeongwoo Kim
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.3
    • /
    • pp.1-11
    • /
    • 2023
  • Permeable reactive barrier (PRB) is a prominent in-situ remedial option for cleanup of contaminated groundwater and has been gaining increasing popularity in recent years. Funnel-and-gate systems, comprised of two side wings of impermeable walls and a central gate wall, are frequently implemented in many sites, but often suffers from bypassing of groundwater due to the progressive clogging of the gate wall over extended period of time. This study investigated technical feasibility of a hybrid funnel-and-gate system designed to address the flow deterioration in the gate wall. The key attribute of the proposed hybrid system is the operation of drainage units at the barrier walls and rear end of the gate wall. A conceptual modeling with MODFLOW indicated the groundwater inside the barrier was maintained at appropriate level to be guided toward the gate wall, yielding constant discharging of groundwater from the gate.

Stress-Pore Pressure Coupled Finite Element Modeling of NATM Tunneling (NATM 터널의 응력-간극수압 연계 유한요소모델링)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.189-198
    • /
    • 2006
  • This paper concerns the finite element (FE) modeling approach for NATM tunneling in water bearing ground within the framework of stress-pore pressure coupled analysis. Fundamental interaction mechanism of ground and groundwater lowering was first examined and a number of influencing factors on the results of coupled FE analysis were identified. A parametric study was then conducted on the influencing factors such as soil-water characteristics, location of hydraulic boundary conditions, the way of modeling drainage flow, among others. The results indicate that the soil-water characteristics plays the most important role in the tunneling-induced settlement characteristics. Based on the results, modeling guidelines were suggested for stress-pore prssure coupled finite element modeling of NATM tunneling.

  • PDF

Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition (암반의 불균질성을 고려한 불포화대 지하수 유동 평가)

  • Ha, Jaechul;Lee, Jeong Hwan;Cheong, Jae-yeol;Jung, Haeryong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • We present the results of two-dimensional numerical simulations predicting the flow of groundwater in a fractured unsaturated zone. We applied the k-field distribution of permeability derived from discrete fracture network (DFN) modeling as the hydraulic properties of a model domain. To model an unsaturated zone, we set the depth from the ground surface to the underground aquifer. The rate of water infiltration into the unsaturated zone was divided into two parts, an artificial structure surface and unsaturated soil zone. The movement of groundwater through the unsaturated zone was simulated with particular emphasis on contaminant transport. It was clearly observed that the contaminants dissolved in groundwater transported vertically from the ground surface to the saturated zone.