• Title/Summary/Keyword: groundwater flow analysis

Search Result 384, Processing Time 0.023 seconds

Evaluation of Fly Ash Disposal Methods by Analysis of Leachate Migration (침출수 이동 해석을 통한 석탄재 처분방식의 평가)

  • 이상일
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.61-73
    • /
    • 1992
  • There are needs to examine the consequences of a regulation in effect to control the migration of leachates from disposal sites. The main objective of this study is to illustrate the methodology to evaluate basic disposal designs for compliance with a certain regulation, The "100/100 rule" is selected for demonstration purpose which dictates that the time for the leachates to travel a horizontal distance of 100feet (30.5m) away from the property where the landfill or pond is located must exceed 100 years. The two primary methods for disposal of ash from coal-fired utility plants, landfill and pond, are studied, Numerical groundwater flow analysis resulted in pressure head distribution and flux information in the cross-section of the domain while path line analysis provided travel path and time of leachate migration to compliance zone.ance zone.

  • PDF

A Study on Analysis of Freshwater-saltwater Interface in the Aquifer around Hwajinpo Lagoon on the Eastern Coast of Korea (동해안 화진포 석호 주변 대수층 내 담수-염수 경계면 분석에 관한 연구)

  • Kim, Minji;Kim, Dongjin;Jun, Seong-Chun;Lee, Jeonghoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.699-707
    • /
    • 2021
  • Hwajinpo Lagoon, located on the eastern coast of Korea, is a unique environment where freshwater and saltwater are mixed. Systematic management of the lagoon is required because it is a biodiversity-rich and area of high conservation value. The existing environment of the lagoon was evaluated by identifying the distribution of the groundwater level and groundwater flow characteristics. In addition, hydrogeochemical fluctuations were analyzed to determine the effect of seawater intrusion into the aquifer. The results demonstrate that the freshwater-saltwater interface is distributed throughout the aquifer and rises when water of the lagoon evaporates due to prolonged periods of low rainfall and high temperature, thereby increasing the possibility of seawater inflow through groundwater. As for the ionic delta properties (difference between the measured and theoretical concentration of mixed waters), it was estimated that the cation-exchange and precipitation reactions occurred in the aquifer due to seawater intrusion. The ratio of seawater mixed at each point was calculated, using oxygen isotopes and chloride as tracers, resulting in an average of 0.3 and a maximum of 0.87. The overall seawater mixing ratio appears to be distributed according to the distance from the coast. However, some of the results were deviated from the theoretical expectations and reflected the characteristics of the nearby aquifers. Further research on seasonal changes and simulation of seawater intrusion mechanisms is required for specific analysis.

Baseflow Comparison using the WHAT system and Flow Rate Measurements in the Dry and Rainy Seasons (건기 및 우기 때의 WHAT system과 유량측정에 의한 기저유출량 비교)

  • Nam, Koung-Hoon;Kim, Gyoo-Bum;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.23 no.2
    • /
    • pp.117-125
    • /
    • 2013
  • Flooding of riparian groundwater caused by changes in rainfall patterns has become a critical problem in areas of agricultural and arable land. Therefore, quantitative analysis of direct runoff and baseflow, which are the most important factors in determining the flow rate of a river, is required to clarify the flooding mechanisms of riparian groundwater. In this study, baseflow obtained using the WHAT system of hydrograph analysis based on Web GIS, and baseflow measured from direct runoff were quantitatively analyzed. Baseflow during the rainy season was 0.489 $m^3/s$ on 17 July 2012, 0.260 $m^3/s$ on 18 July 2012, and 0.279 $m^3/s$ on 19 July 2012, while that during the dry season was 0.006 $m^3/s$ on 6 March 2013 and 0.009 $m^3/s$ on 30 March 2013. The results show that an increase in baseflow occurred during the rainy season in the alluvial area of a riparian zone, and that the measurement error was less during the dry season than during the rainy season.

Performance Analysis of Ground Heat Exchanger in Combined Well and Open-Closed Loops Geothermal (CWG) System (밀폐형과 개방형이 결합된 복합지열시스템의 지중열교환기 성능 분석)

  • Park, Youngyun;Song, Jae-Yong;Lee, Geun-Chun;Kim, Ki-Joon;Mok, Jong-Koo;Park, Yu-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.23-29
    • /
    • 2017
  • This study was conducted to evaluate performance of geothermal heat exchanger (GHE) in the combined well and open-closed loops geothermal (CWG) systems. The CWG systems were designed to combine open loop geothermal heat pumps and closed loop geothermal heat pumps for high energy efficiency. GHE of the CWG systems could be installed at pumping wells for agricultural usage. To get optimal heat exchange capacity of GHE of the CWG systems, 4 GHEs with various materials and apertures were tested at laboratory scale. Polyethylene (PE) and stainless steel (STS) were selected as GHE materials. The maximum heat exchange capacity of GHEs were estimated to be in the range of 33.0~104 kcal/min. The heat exchange capacity of STS GHEs was 2.4~3.2 times higher than that of PE GHE. The optimal cross section area of GHE and flow rate of circulating water of GHE were estimated to be $2,500mm^2$ and 113 L/min, respectively. For more complicated GHE of the CWG systems, it is necessary to evaluate GHEs at various scales.

Analysis of the Fracture Roughness of Crystalline Rock under Multi-stage Stress Conditions (다단계압력 환경하에서의 결정질 암석의 절리면 거칠기 변화 분석)

  • Choi, Junghae;Kim, Heyjin
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.237-249
    • /
    • 2019
  • The roughness changes on a fracture surface were analyzed via a multi-stage compression test under high temperatures to assess how the cracks in a rock mass affect groundwater movement. The analyzed samples consist of coarse granitic rocks from approximately 40 and 270 m depth, and fine granitic rocks from 500 m depth. The compression test was conducted on $20{\times}40{\times}5mm$ samples using a loading system where the pressure increases in 10 MPa increments to 120 MPa. A high-resolution 3D confocal laser scanning microscope (CLSM) was used to observe the surface changes, including the roughness changes, at each pressure step. The roughness change was calculated based on the roughness factor. The experimental results indicate that the roughness of the fracture surface varies with rock type under the stepwise pressure conditions. These data provide a basis for predicting groundwater flow along rock fractures.

Analysis of Topography and Ground Characteristics of Landcreep Reoccurrence in the Yangpyeong Area (양평지역 땅밀림 재발생지의 지형 및 지반 특성 분석)

  • Park, Jae Hyeon;Lee, Sang Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.263-275
    • /
    • 2022
  • We conducted this study to provide essential data for implementing restoration measures on the physical properties of the geology, topography, and soil of the landcreep areas in Yangpyeong-gun, Gyeonggi-do. The strata of the survey area comprised topsoil, weathered soil, weathered rock, and soft rock layers. The landcreep area, caused by colluvial debris, was located in a convex topography shape distributed as bedrock with shales and incorporated with sandstone. According to the measurement of the displacement meter, the surveyed area has crept from 1.1 mm to 6.5 mm during the recurrent landcreep between 1 July and 27 August, 2020. The landcreep had progressed over two directions (S65° W, E45° S, and E70° S) which were similar to the groundwater flow direction (E82.5° S and S16.8° W). The average slope of the landcreep area occurred on a gentle slope (19.3°), lower than the average slope of the mountain area (25°) in Korea. The bulk density in the groundwater areas was lower than that in other surveyed areas.

Development of Threshold Runoff Simulation Method for Runoff Analysis of Jeju Island (제주도 유출분석을 위한 한계유출 모의기법 개발)

  • Chung, Il-Moon;Lee, Jeong-Woo;Kim, Ji-Tae;Na, Han-Na;Kim, Nam-Won
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1347-1355
    • /
    • 2011
  • In Jeju island, runoff has frequently happened when the rainfall depth is over a threshold value. To simulated this characteristic rainfall-runoff model structure has to be modified. In this study, the TRSM (Threshold Runoff Simulation Method) was developed to overcome the limitations of SWAT in applying to the hydrologic characteristics of Jeju island. When the precipitation and soil water are less than threshold value, we revised the SWAT routine not to make surface/lateral or groundwater discharge. For Hancheon watershed, the threshold value was set as 80% of soil water through the analysis of rainfall-runoff relationship. Through the simulation of test watershed, it was proven that TRSM performed much better in simulating pulse type stream flow for the Hancheon watershed.

A Study on the Model Test for Mine Filling Using Coal Ash (석탄회를 이용한 갱내충전모형시험 연구)

  • Lee, Sang-Eun;Park, Se-Jun;Kim, Hak-Sung;Jang, Hang-Suk;Kim, Tae-Heok
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.449-461
    • /
    • 2012
  • Coal ash generated from thermal power plants is planned to use for mine filling in order to prevent subsidence of the ground. In according, the basic physical properties and flow characteristics were grasped using coal ash from generated Yeongdong thermal power plant, and hydraulic filling experiments were performed a total of eight times by manufacturing the model of 1 inclined shaft in Hanbo coal mine. The specific gravity of coal ash is 2.34, and the result of particle size analysis belongs to silty sand (SM). Coal ash of weight ratio of 60% was used in the filling experiments of the model, since liquefaction have shown in coal ash less than weight ratio of 70% from the result of slump and flow test. The outlet should be located at the bottom of the inclined and vertical shaft, this was favorable way in improving the filling efficiency from the experiment results regardless of groundwater exists.

A Study on Permeability Characteristics of Damaged Granite (화강암 공시체의 응력레벨에 따른 투수특성에 대한 연구)

  • Kim, Jong-Tae;Seiki, T.;Kang, Mee-A;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.135-142
    • /
    • 2007
  • Although rock itself has high strength or low permeability, engineering properties of rock masses are significantly influenced by discontinuities such as cracks and joints. Considered with possibility of groundwater flow in massive rock mass of deep subsurface, the connectivity of micro cracks should be analyzed as a conduit of ground-water flow. The objective of this study is to estimate permeability characteristics of granite dependent on damage process with application of joint distribution analysis and modeling of permeability analysis in rock masses. In case of average permeability coefficients, the modeling results based on micro cracks data are well matched with the results from permeability tests. Based on the visualization result of three dimensional model, the average permeability coefficients through the discharge plane have a positive relationship with the number of microcrack induced by rock damage.

Study on Moye's Method for Analysis of Constant-Head Tests Conducted in Crystalline Rock (결정질 암반에서 Moye 방법을 이용한 정압시험의 해석에 대한 고찰)

  • Kyung-Woo Park;Byeong-Hak Park;Sung-Hoon Ji;Kang-Kun Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.519-530
    • /
    • 2023
  • Moye's analytical solution was examined as a method for constant-head tests under steady-state conditions, and results were compared with transient-state analyses in in situ hydraulic tests. The sensitivity of hydraulic conductivities calculated using Moye's method increased with the length of the test section, which should be as large as possible under test conditions. Particularly in low-permeability media with less than 10-8 m/sec of hydraulic conductivity, hydraulic conductivity is lower than that under transient-state conditions and can be recalculated by adjusting the boundary between radial and spherical flow assumed in Moye's equation. Constant-head tests performed in the research borehole at the KAERI Underground Research Tunnel (KURT) indicated that transmissivities derived from the constant-head withdrawal test under transient-state conditions in low-permeability media were higher than those derived from steady-state tests, likely because the groundwater flow boundary was smaller than the "half of the test-section length"assumed by Moye's equation. When interpreting constant-head test results for crystalline rock, the hydrogeological properties of the medium may be better understood by considering assumed conditions accompanying analysis of the steady-state condition and comparing them with results for the transient-state analysis, rather than simply assuming properties based on steady-state analyses.