• Title/Summary/Keyword: groundwater exploration

Search Result 167, Processing Time 0.03 seconds

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.

Imaging Fractures by using VSP Data on Geothermal Site (지열지대 VSP 자료를 이용한 파쇄대 영상화 연구)

  • Lee, Sang-Min;Byun, Joong-Moo;Song, Ho-Cheol;Park, Kwon-Gyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • Attention has been focused on geothermal energy as an alternative energy because it is continuously operable without external supply. Most of geothermal anomalies in Korea are related to deep circulation of groundwater through a fracture system in granite area. Therefore it is very important to understand the distribution of the fracture system which is the main channel of ground water. In this research, we constructed the velocity models with a fracture system and the layered sediments, respectively, and generated synthetic data sets with them to verify the presented vertical seismic profiling (VSP) preprocessing scheme. We compared the results from conventional VSP preprocessing flow to those from VSP preprocessing flow considering fracture system. We noticed that the preprocessing flow considering fracture system retains more sufficient signal including down-going wave than conventional preprocessing. In addition, we applied 3D VSP prestack phase screen migration to the preprocessed reversed VSP (RVSP) data from Seokmo Island so that we were able to image fracture structure of the geothermal site in Seokmo Island.

Borehole Elemental Concentration Logs: Theory, Current Trends and Next Level (암석구성성분검층: 원리, 연구동향 및 향후 과제)

  • Shin, Jehyun;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.149-159
    • /
    • 2019
  • Borehole elemental concentration logging, measuring neutron-induced gamma rays by inelastic scattering and neutron capture interactions between neutron and formation, delivers concentrations of the most common elements found in the minerals and fluids of subsurface formation. X-ray diffraction and X-ray fluorescence analysis from core samples are traditionally used to understand formation composition and mineralogy, but it represents only part of formations. Additionally, it is difficult to obtain elemental analysis over the whole intervals because of poor core recovery zones such as fractures or sand layers mainly responsible for groundwater flow. The development of borehole technique for in situ elemental analysis plays a key role in assessing subsurface environment. Although this technology has advanced consistently starting from conventional and unconventional resources evaluation, it has been considered as exclusive techniques of some major service company. As regards domestic research and development, it has still remained an unexplored field because of some barriers such as the deficiency of detailed information on tools and calibration facility for chemistry and mineralogy database. This article reviews the basic theory of spectroscopy measurements, system configuration, calibration facility, and current status. In addition, this article introduces the domestic researches and self-development status on borehole elemental concentration tools.

A Review on Past Cases of Geophysical Explorations for Assessment of Slope Stability (사면 안정성 평가를 위한 물리탐사 적용 사례 분석)

  • Cho, Ahyun;Joung, Inseok;Jeong, Juyeon;Song, Seo Young;Nam, Myung Jin
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.111-125
    • /
    • 2022
  • Since landslide can cause huge damages to many facilities, close characterization of slopes is needed for appropriate reinforcements for the unstable ones in order to prevent the damages. Geophysical surveys, which can characterize a large area at a relatively low cost without disturbing slopes, have been widely employed for the assessment of slope stability in other countries. However, only conventional direct investigation methods are mainly used in Korea. In this paper, we analyzed various cases, which evaluated slope stabilities by characterizing slopes using geophysical exploration. First, we introduced changes in geophysical properties due to unstable media of slope like fracture location, fracture connectivity and distribution of groundwater level, and subsequently discussed the applicability of geophysical methods to the detection of the changes; the methods include electrical resistivity survey, seismic survey, self-potential survey, induced polarization survey and ground penetrating radar. Based on this description, we analyzed how geophysical surveys were performed on various slopes.

Delineation of internal heterogeneities of Geum River point bar deposits in Buyeo area using GPR Data (지하 투과 레이다 조사를 통한 부여 지역 금강변의 충적 대수층 내부 불균질성 파악)

  • Rhee, Chul-Woo;Kim, Hyoung-Soo;Lee, Kyung-Joo
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.337-344
    • /
    • 2002
  • The alluvial deposits along meandering rivers can be used as an artificial aquifer for infiltration of river waters. Internal heterogeneity of the alluvial deposits is a prerequisite information for the development of alluvial groundwater because vortical and lateral movement of alluvial ground water depends on the internal heterogeneity The internal heterogeneity due to variations in channel behavior can be delineated using GPR survey, GPR profiles for the point bar deposits near Buyeo county reveals two different stratigraphic units: the lower inclined heterogeneous strata and the upper horizontally stratified strata. The upper unit is largely indicative of vertical accumulation by overbank floods within a floodplain, whereas the lower one represents typical point bar deposits formed by lateral accretion. The stratigraphic variation in the heterogeneity shows that GPR survey is a useful and necessary investigation method for the development of alluvial ground water.

  • PDF

Detection of inflow permeable zones using fluid conductivity logging in coastal aquifer (공내수 치환기법을 이용한 연안지역 대수층의 수리특성 평가)

  • Hwang Seho;Park Yunsung;Shim Jehyun;Park Kwon Gp;Choi Sun Young;Lee Sang Kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.83-92
    • /
    • 2005
  • Fluid conductivity logging has been applied in the boreholes to identify the permeable fi:actures and estimate the origin of saline groundwater in coast area. Fluid replacement technique measures the fluid electrical conductivity with depth at different times in a well after the borehole is first washed out with different water by passing a tube to the borehole bottom. Then formation water flows into the borehole through aquifer such as permeable fractures or porous formation during ambient or pumping condition. Measured conductivity profiles with times therefore indicate the locations of permeable zone or fractures within the open hole or the fully slotted casing hole. As a result of fluid conductivity logging for three boreholes in the study area, it is interpreted that saline groundwater is caused by seawater intrusion through fractured rock, although the effect by land reclamation partially remains. We are planning the quantitative analysis to estimate the hydraulic characteristics using fluid replacement technique, and this approach might be usefully utilized for assessing the characteristics of seawater intrusion, the design of optimal pumping, and estimating the hydraulic properties in coastal aquifer.

  • PDF

Geophysical well logs in basaltic area, Jeju Island (제주 현무암 지역의 용암분출에 따른 물리검층 반응의 특성 고찰)

  • Hwang Seho;Shim Jehyun;Park Inhwa;Choi Sun Young;Park Ki Hwa;Koh Gi Won
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.55-71
    • /
    • 2005
  • Jeju Island is mainly composed of basaltic lava flows and subordinate amounts of volcaniclastic sedimentary rocks. Jeju Province operates the monitoring wells for seawater intrusion problems around Jeju Island to evaluate of groundwater resources in coastal area. Various surveys and monitoring have been performed in boreholes, and also conventional geophysical well loggings conducted to identify basalt sequences and assess seawater intrusion problems. Various conventional geophysical well logs, including radioactive logs, electrical log, caliper log, and temperature and conductivity log and heat-pulse flowmeter log were obtained in 29 boreholes. The results of geophysical well loggings for saturated rocks are interesting and consistent. Natural gamma logs are useful in basalt sequences to sedimentary interbeds, unconsolidated U formation, and seoguipo formation with higher natural gamma log regardless of saturated or unsaturated basalts. Neutron logs are very effective to discriminate among individual lava flows, flow breaks, and sedimentary interbeds in saturated formation. In hyalocastite, porosity is high and resistivity is low, and we think that hyalocastite is a major pathway of fluid flow. In trachybasalt, porosity has a wide range and resistivity is high. In sedimentary interbeds, unconsolidated U formation and seoguipo formation, porosity is high and resistivity is low. The temperature logs in eastern area in Jeju are useful to interpret the hydrogeological unit and evaluate seawater intrusion in Suan area.

  • PDF

A Strategic Plan and Management for Ecological Abandoned Mine Land (AML) Reuse Using GIS (지형정보시스템을 활용한 생태학적인 폐광지역 재개발 계획 및 관리)

  • Lee, Ju-Young;Han, Moo-Young;Yang, Jung-Seok;Choi, Jae-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • Plan and management for Ecological Abandoned Mine Lands (AMLs) reuse using Geographic Information System (GIS) technique are an ideal method. GIS technique display, manage and analyze a spatially referenced data, which can be combined in user-defined ways to make plan and decision about AMLs reuse. Local communities are affected by AMLs. In the past, plan and management of AMLs have never been considered for ecological aspects as well as using GIS. However, the rapidly growing GIS technology have proven to be a valuable tool in the process of understanding environment and of making responsible environmental decisions. This paper suggests that making responsible decision and plan using GIS can create a various types of benefits to local communities. This also shows that GIS may play a vital role at the decision/planning process of analysis and exploration of local environmental situation. We are trying to apply to decision support system for AMLs reuse. Moreover, a lot of thematic maps are making using GIS providing a comprehensive data with images. These can be an ideal platform to deliver meaningful outcomes.

A study on monitoring the inner structure of dam body using high resolution seismic reflection method (고분해능 탄성파 반사법을 이용한 댐체 내부구조 모니터링 연구)

  • Kim Jungyul;Kim Hyoungsoo;Oh Seokhoon;Kim Yoosung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.15-20
    • /
    • 2005
  • Defects of dam body which can be induced in seepage or leakage procedure can directly affect dam safety. Therefore, a proper inspection method should be carried out in the first place to find out their positions and sizes, After that, some reinforcement works such as grouting and the corresponding assessment could be taken in a proper way. The dam(center core type earth dam) issued in this study has been in need for intensive diagnosis and reinforcement work, because a lot of slumps similar to cracks, seepage and some boggy area have been observed on the downstream slope. High resolution seismic reflection method was performed on the crest profile twice before and after grouting work(Aug. 2001 and Nov. 2004) aimed at the dam inspection and the assessment of grouting efficiency as well. To enhance the data resolution, P-beam energy radiation technique which can reduce the surface waves and hence to reinforce the reflection events was used. Strong reflection events were recognized in the stack section before grouting work, It seems that the events would be caused by e.g. horizontal cracks with a considerable aperture, Meanwhile such strong reflection events were not observed in the section after grouting. That is, the grouting work was dear able to reinforce the defects of dam body. Hence, the section showed an well arranged picture of dam inner structure. In this sense, seismic reflection method will be a desirable technique for dam inspection and for monitoring dam inner structure as well.

  • PDF

A study on Monitoring the Inner Structure of Dam Body Using High Resolution Seismic Reflection Method (고분해능 탄성파 반사법을 이용한 댐체 내부구조 모니터링 연구)

  • Kim, Jung-Yul;Kim, Hyoung-Soo;Oh, Seok-Hoon;Kim, Yoo-Sung
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Defects of dam body which can be induced in seepage or leakage procedure can directly affect dam safety. Therefore, a proper inspection method should be carried out in the first place to find out their positions and sizes. After that, some reinforcement works such as grouting and the corresponding assessment could be taken in a proper way. The dam(center core type earth dam) issued in this study has been in need for intensive diagnosis and reinforcement work, because a lot of slumps similar to cracks, seepage and some boggy area have been observed on the downstream slope. High resolution seismic reflection method was performed on the crest profile twice before and after grouting work(Aug. 2001 and Nov. 2004) aimed at the dam inspection and the assessment of grouting efficiency as well. To enhance the data resolution, P-beam energy radiation technique which can reduce the surface waves and hence to reinforce the reflection events was used. Strong reflection events were recognized in the stack section before grouting work, It seems that the events would be caused by e.g. horizontal cracks with a considerable aperture. Meanwhile such strong reflection events were not observed in the section after grouting. That is, the grouting work was dear able to reinforce the defects of dam body. Hence, the section showed an well arranged picture of dam inner structure. In this sense, seismic reflection method will be a desirable technique for dam inspection and for monitoring dam inner structure as well.

  • PDF