• Title/Summary/Keyword: ground-based remote sensing

Search Result 383, Processing Time 0.028 seconds

A Case Study on Field Campaign-Based Absolute Radiometric Calibration of the CAS500-1 Using Radiometric Tarp (Radiometric Tarp를 이용한 현장관측 기반의 차세대중형위성 1호 절대복사보정 사례 연구)

  • Woojin Jeon;Jong-Min Yeom;Jae-Heon Jung;Kyoung-Wook Jin;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1273-1281
    • /
    • 2023
  • Absolute radiometric calibration is a crucial process in converting the electromagnetic signals obtained from satellite sensors into physical quantities. It is performed to enhance the accuracy of satellite data, facilitate comparison and integration with other satellite datasets, and address changes in sensor characteristics over time or due to environmental conditions. In this study, field campaigns were conducted to perform vicarious calibration for the multispectral channels of the CAS500-1. Two valid field observations were obtained under clear-sky conditions, and the top-of-atmosphere (TOA) radiance was simulated using the MODerate resolution atmospheric TRANsmission 6 (MODTRAN 6) radiative transfer model. While a linear relationship was observed between the simulated TOA radiance of tarps and CAS500-1 digital numbers(DN), challenges such as a wide field of view and saturation in CAS500-1 imagery suggest the need for future refinement of the calibration coefficients. Nevertheless, this study represents the first attempt at absolute radiometric calibration for CAS500-1. Despite the challenges, it provides valuable insights for future research aiming to determine reliable coefficients for enhanced accuracy in CAS500-1's absolute radiometric calibration.

Assessment of Outgoing Longwave Radiation using COMS : Cheongmi and Sulma Catchments (천리안 위성을 사용한 방출장파복사량 검증 : 청미천, 설마천)

  • Baek, Jong Jin;Sur, Chanyang;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.465-476
    • /
    • 2013
  • The outgoing longwave radiation (Rlu) for estimation of evapotranspiration is essential to understand energy balance of earth. However, the ground measurement based Rlu has a limitation that the observation can just stand for the exact site, not for an area. In this study, remote sensing technique is adopted to compensate the limitation of ground observation using the geostationary satellite. We calculated Rlu using Communication, Ocean and Meteorological Satellite (COMS). We validated Rlu from COMS with Cheongmicheon (CFK) and Sulmacheon (SMK) flux tower observations controlled by Hydrological Survey Center. The results showed that Rlu from COMS represented reasonable correlation with ground based measurement. Based on the results in this study, COMS will be able to be used for estimation of evapotranspiration.

Evaluation of the Utilization Potential of High-Resolution Optical Satellite Images in Port Ship Management: A Case Study on Berth Utilization in Busan New Port (고해상도 광학 위성영상의 항만선박관리 활용 가능성 평가: 부산 신항의 선석 활용을 대상으로)

  • Hyunsoo Kim ;Soyeong Jang ;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1173-1183
    • /
    • 2023
  • Over the past 20 years, Korea's overall import and export cargo volume has increased at an average annual rate of approximately 5.3%. About 99% of the cargo is still being transported by sea. Due to recent increases in maritime cargo volume, congestion in maritime logistics has become challenging due to factors such as the COVID-19 pandemic and conflicts. Continuous monitoring of ports has become crucial. Various ground observation systems and Automatic Identification System (AIS) data have been utilized for monitoring ports and conducting numerous preliminary studies for the efficient operation of container terminals and cargo volume prediction. However, small and developing countries' ports face difficulties in monitoring due to environmental issues and aging infrastructure compared to large ports. Recently, with the increasing utility of artificial satellites, preliminary studies have been conducted using satellite imagery for continuous maritime cargo data collection and establishing ocean monitoring systems in vast and hard-to-reach areas. This study aims to visually detect ships docked at berths in the Busan New Port using high-resolution satellite imagery and quantitatively evaluate berth utilization rates. By utilizing high-resolution satellite imagery from Compact Advanced Satellite 500-1 (CAS500-1), Korea Multi-Purpose satellite-3 (KOMPSAT-3), PlanetScope, and Sentinel-2A, ships docked within the port berths were visually detected. The berth utilization rate was calculated using the total number of ships that could be docked at the berths. The results showed variations in berth utilization rates on June 2, 2022, with values of 0.67, 0.7, and 0.59, indicating fluctuations based on the time of satellite image capture. On June 3, 2022, the value remained at 0.7, signifying a consistent berth utilization rate despite changes in ship types. A higher berth utilization rate indicates active operations at the berth. This information can assist in basic planning for new ship operation schedules, as congested berths can lead to longer waiting times for ships in anchorages, potentially resulting in increased freight rates. The duration of operations at berths can vary from several hours to several days. The results of calculating changes in ships at berths based on differences in satellite image capture times, even with a time difference of 4 minutes and 49 seconds, demonstrated variations in ship presence. With short observation intervals and the utilization of high-resolution satellite imagery, continuous monitoring within ports can be achieved. Additionally, utilizing satellite imagery to monitor changes in ships at berths in minute increments could prove useful for small and developing country ports where harbor management is not well-established, offering valuable insights and solutions.

Assessment of the Inundation Area and Volume of Tonle Sap Lake using Remote Sensing and GIS (원격탐사와 GIS를 이용한 Tonle Sap호의 홍수량 평가)

  • Chae, Hyosok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.96-106
    • /
    • 2005
  • The ability of remote sensing and GIS technique, which used to provide valuable informations in the time and space domain, has been known to be very useful in providing permanent records by mapping and monitoring flooded area. In 2000, floods were at the worst stage of devastation in Tonle Sap Lake, Mekong River Basin, for the second time in records during July and October. In this study, Landsat ETM+ and RADARSAT imagery were used to obtain the basic information on computation of the inundation area and volume using ISODATA classifier and segmentation technique. However, the extracted inundatton area showed only a small fraction than the actually inundated area because of clouds in the imagery and complex ground conditions. To overcome these limitations, the cost-distance method of GIS was used to estimate the inundated area at the peak level by integrating the inundated area from satellite imagery in corporation with digital elevation model (DEM). The estimated inundation area was simply converted with the inundation volume using GIS. The inundation volume was compared with the volume based on hydraulic modeling with MIKE 11. which is the most poppular among the dynamic river modeling system. The method is suitable for estimating inundation volume even when Landsat ETM+ has many clouds in the imagery.

  • PDF

Change detection algorithm based on amplitude statistical distribution for high resolution SAR image (통계분포에 기반한 고해상도 SAR 영상의 변화탐지 알고리즘 구현 및 적용)

  • Lee, Kiwoong;Kang, Seoli;Kim, Ahleum;Song, Kyungmin;Lee, Wookyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.227-244
    • /
    • 2015
  • Synthetic Aperture Radar is able to provide images of wide coverage in day, night, and all-weather conditions. Recently, as the SAR image resolution improves up to the sub-meter level, their applications are rapidly expanding accordingly. Especially there is a growing interest in the use of geographic information of high resolution SAR images and the change detection will be one of the most important technique for their applications. In this paper, an automatic threshold tracking and change detection algorithm is proposed applicable to high-resolution SAR images. To detect changes within SAR image, a reference image is generated using log-ratio operator and its amplitude distribution is estimated through K-S test. Assuming SAR image has a non-gaussian amplitude distribution, a generalized thresholding technique is applied using Kittler and Illingworth minimum-error estimation. Also, MoLC parametric estimation method is adopted to improve the algorithm performance on rough ground target. The implemented algorithm is tested and verified on the simulated SAR raw data. Then, it is applied to the spaceborne high-resolution SAR images taken by Cosmo-Skymed and KOMPSAT-5 and the performances are analyzed and compared.

Sensitivity of COMS/GOCI Measured Top-of-atmosphere Reflectances to Atmospheric Aerosol Properties (COMS/GOCI 관측값의 대기 에어러솔의 특성에 대한 민감도 분석)

  • Lee, Kwon-Ho;Kim, Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.559-569
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) on board the Communication Ocean Meteorological Satellite (COMS), the first geostationary ocean color sensor, requires accurate atmospheric correction since its eight bands are also affected by atmospheric constituents such as gases, molecules and atmospheric aerosols. Unlike gases and molecules in the atmosphere, aerosols can interact with sunlight by complex scattering and absorption properties. For the purpose of qualified ocean remote sensing, understanding of aerosol-radiation interactions is needed. In this study, we show micro-physical and optical properties of aerosols using the Optical Property of Aerosol and Cloud (OPAC) aerosol models. Aerosol optical properties, then, were used to analysis the relationship between theoretical satellite measured radiation from radiative transfer calculations and aerosol optical thickness (AOT) under various environments (aerosol type and loadings). It is found that the choice of aerosol type makes little different in AOT retrieval for AOT<0.2. Otherwise AOT differences between true and retrieved increase as AOT increases. Furthermore, the differences between the AOT and angstrom exponent from standard algorithms and this study, and the comparison with ground based sunphotometer observations are investigated. Over the northeast Asian region, these comparisons suggest that spatially averaged mean AOT retrieved from this study is much better than from standard ocean color algorithm. Finally, these results will be useful for aerosol retrieval or atmospheric correction of COMS/GOCI data processing.

Development of Android-Based Photogrammetric Unmanned Aerial Vehicle System (안드로이드 기반 무인항공 사진측량 시스템 개발)

  • Park, Jinwoo;Shin, Dongyoon;Choi, Chuluong;Jeong, Hohyun
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.215-226
    • /
    • 2015
  • Normally, aero photography using UAV uses about 430 MHz bandwidth radio frequency (RF) modem and navigates and remotely controls through the connection between UAV and ground control system. When using the exhausting method, it has communication range of 1-2 km with frequent cross line and since wireless communication sends information using radio wave as a carrier, it has 10 mW of signal strength limitation which gave restraints on life my distance communication. The purpose of research is to use communication technologies such as long-term evolution (LTE) of smart camera, Bluetooth, Wi-Fi and other communication modules and cameras that can transfer data to design and develop automatic shooting system that acquires images to UAV at the necessary locations. We conclude that the android based UAV filming and communication module system can not only film images with just one smart camera but also connects UAV system and ground control system together and also able to obtain real-time 3D location information and 3D position information using UAV system, GPS, a gyroscope, an accelerometer, and magnetic measuring sensor which will allow us to use real-time position of the UAV and correction work through aerial triangulation.

Experimental Retrieval of Soil Moisture for Cropland in South Korea Using Sentinel-1 SAR Data (Sentinel-1 SAR 데이터를 이용한 우리나라 농지의 토양수분 산출 실험)

  • Lee, Soo-Jin;Hong, Sungwook;Cho, Jaeil;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.947-960
    • /
    • 2017
  • Soil moisture plays an important role to affect the Earth's radiative energy balance and water cycle. In general, satellite observations are useful for estimating the soil moisture content. Passive microwave satellites have an advantage of direct sensitivity on surface soil moisture. However, their coarse spatial resolutions (10-36 km) are not suitable for regional-scale hydrological applications. Meanwhile, in-situ ground observations of point-based soil moisture content have the disadvantage of spatially discontinuous information. This paper presents an experimental soil moisture retrieval using Sentinel-1 SAR (Synthetic Aperture Radar) with 10m spatial resolution for cropland in South Korea. We developed a soil moisture retrieval algorithm based on the technique of linear regression and SVR (support vector regression) using the ground observations at five in-situ sites and Sentinel-1 SAR data from April to October in 2015-2017 period. Our results showed the polarization dependency on the different soil sensitivities at backscattered signals, but no polarization dependence on the accuracies. No particular seasonal characteristics of the soil moisture retrieval imply that soil moisture is generally more affected by hydro-meteorology and land surface characteristics than by phenological factors. At the narrower range of incidence angles, the relationship between the backscattered signal and soil moisture content was more distinct because the decreasing surface interference increased the retrieval accuracies under the condition of evenly distributed soil moisture (during the raining period or on the paddy field). We had an overall error estimate of RMSE (root mean square error) of approximately 6.5%. Our soil moisture retrieval algorithm will be improved if the effects of surface roughness, geomorphology, and soil properties would be considered in the future works.

A Study on the Use of Drones for Disaster Damage Investigation in Mountainous Terrain (산악지형에서의 재난피해조사를 위한 드론 맵핑 활용방안 연구)

  • Shin, Dongyoon;Kim, Dajinsol;Kim, Seongsam;Han, Youkyung;Nho, Hyunju
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1209-1220
    • /
    • 2020
  • In the case of forest areas, the installation of ground control points (GCPs) and the selection of terrain features, which are one of the unmanned aerial photogrammetry work process, are limited compared to urban areas, and safety problems arise due to non-visible flight due to high forest. To compensate for this problem, the drone equipped with a real time kinematic (RTK) sensor that corrects the position of the drone in real time, and a 3D flight method that fly based on terrain information are being developed. This study suggests to present a method for investigating damage using drones in forest areas. Position accuracy evaluation was performed for three methods: 1) drone mapping through GCP measurement (normal mapping), 2) drone mapping based on topographic data (3D flight mapping), 3) drone mapping using RTK drone (RTK mapping), and all showed an accuracy within 2 cm in the horizontal and within 13 cm in the vertical position. After evaluating the position accuracy, the volume of the landslide area was calculated and the volume values were compared, and all showed similar values. Through this study, the possibility of utilizing 3D flight mapping and RTK mapping in forest areas was confirmed. In the future, it is expected that more effective damage investigations can be conducted if the three methods are appropriately used according to the conditions of area of the disaster.

Change of Refractive Index of Air in X-band due to Atmospheric Humidity, Temperature and Pressure measured by GB-SAR Interferometry (GB-SAR 간섭기법으로 측정된 X-밴드 대기 굴절률의 상대습도, 기온 및 기압에 따른 변화)

  • Lee, Jae-Hee;Lee, Hoon-Yol;Cho, Seong-Jun;Sung, Nak-Hoon;Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • In this paper, we analyzed the phase change of 5-triangular trihedral comer reflectors by using X-band Ground-Based Synthetic Aperture Radar (GB-SAR) system. Each reflector was set as a stationary target at a different distance from the system. We obtained total 123 full-polarization images during 40 hours continuously at 20 minute interval. Results of SAR interferometric analysis showed phase changes of maximum 2 radians and followed similar pattern with atmospheric data. Through a GB-SAR phase formula that includes refractive index in the air, we performed regression analysis for refractive index as a function of atmospheric humidity, temperature and pressure. As a result, refractive index of air in X-band showed relatively high coefficient of determination with humidity and temperature (0.72 and 0.76 on average, respectively) but not so with pressure (0.34). The refractive index of air in X -band changed by 3.14\;{\times}\;10^{-5}$ during the measuring time with a humidity range of 50% ~ 90% and a temperature range of $-1^{\circ}C$ ~ $9^{\circ}C$. We expect that a total expression of refractive index of air including humidity, temperature and pressure can be calculated when more extensive data would be collected at various atmospheric conditions.