• Title/Summary/Keyword: ground-based remote sensing

Search Result 383, Processing Time 0.032 seconds

Improving Field Crop Classification Accuracy Using GLCM and SVM with UAV-Acquired Images

  • Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.93-101
    • /
    • 2024
  • Accurate field crop classification is essential for various agricultural applications, yet existing methods face challenges due to diverse crop types and complex field conditions. This study aimed to address these issues by combining support vector machine (SVM) models with multi-seasonal unmanned aerial vehicle (UAV) images, texture information extracted from Gray Level Co-occurrence Matrix (GLCM), and RGB spectral data. Twelve high-resolution UAV image captures spanned March-October 2021, while field surveys on three dates provided ground truth data. We focused on data from August (-A), September (-S), and October (-O) images and trained four support vector classifier (SVC) models (SVC-A, SVC-S, SVC-O, SVC-AS) using visual bands and eight GLCM features. Farm maps provided by the Ministry of Agriculture, Food and Rural Affairs proved efficient for open-field crop identification and served as a reference for accuracy comparison. Our analysis showcased the significant impact of hyperparameter tuning (C and gamma) on SVM model performance, requiring careful optimization for each scenario. Importantly, we identified models exhibiting distinct high-accuracy zones, with SVC-O trained on October data achieving the highest overall and individual crop classification accuracy. This success likely stems from its ability to capture distinct texture information from mature crops.Incorporating GLCM features proved highly effective for all models,significantly boosting classification accuracy.Among these features, homogeneity, entropy, and correlation consistently demonstrated the most impactful contribution. However, balancing accuracy with computational efficiency and feature selection remains crucial for practical application. Performance analysis revealed that SVC-O achieved exceptional results in overall and individual crop classification, while soybeans and rice were consistently classified well by all models. Challenges were encountered with cabbage due to its early growth stage and low field cover density. The study demonstrates the potential of utilizing farm maps and GLCM features in conjunction with SVM models for accurate field crop classification. Careful parameter tuning and model selection based on specific scenarios are key for optimizing performance in real-world applications.

The phase angle dependences of Reflectance on Asteroid (25143) Itokawa from the Hayabusa Spacecraft Multi-band Imaging Camera(AMICA)

  • Lee, Mingyeong;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.61.3-62
    • /
    • 2015
  • Remote-sensing observation is one of the observation methods that provide valuable information, such as composition and surface physical conditions of solar system objects. The Hayabusa spacecraft succeeded in the first sample returning from a near-Earth asteroid, (25143) Itokawa. It has established a ground truth technique to connect between ordinary chondrite meteorites and S-type asteroids. One of the scientific observation instruments that Hayabusa carried, Asteroid Multi-band Imaging Camera(AMICA) has seven optical-near infrared filters (ul, b, v, w, x, p, and zs), taking more than 1400 images of Itokawa during the rendezvous phase. The reflectance of planetary body can provide valuable information of the surface properties, such as the optical aspect of asteroid surface at near zero phase angle (i.e. Sun-asteroid-observer's angle is nearly zero), light scattering on the surface, and surface roughness. However, only little information of the phase angle dependences of the reflectance of the asteroid is known so far. In this study, we investigated the phase angle dependences of Itokawa's surface to understand the surface properties in the solar phase angle of $0^{\circ}-40^{\circ}$ using AMICA images. About 700 images at the Hayabusa rendezvous phase were used for this study. In addition, we compared our result with those of several photometry models, Minnaert model, Lommel-Seeliger model, and Hapke model. At this conference, we focus on the AMICA's v-band data to compare with previous ground-based observation researches.

  • PDF

Calculation of Phase Center of Large Geomorphological Object on the Surface

  • Kim Jun-su;Park Sang-Eun;Kim Duk-jin;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.741-744
    • /
    • 2005
  • A numerical scattering model for artificial metal structure based on physical optics approximation is developed to identify the height of phase center, and the result is compared with interferometric SAR DEM. The interferometric SAR data were gathered by AIRSAR during PACRIM- II campaign on Jeju Island. Power transmission towers on piedmont pasture along the slopes of Mt. Halla look like elliptic risings in TOPSAR DEM. The heights of risings are quantitatively analyzed using a scattering model in the way of achieving the height of phase centers of power transmission towers. A numerical algorithm is developed on the basis of physical optics approximation. The structure of power transmission tower was decomposed into hundreds of rectangular metal plates, of which the scattering matrix is known in analytic form, and the calculated scattering fields were summed coherently. The effect of direct backscattering component, ground-scatterer component and scatterer-ground component are decomposed and computed individually for each rectangular metal plate. The $\Deltak-radar$ equivalent was used to calculate height of phase center of the scatterer. The heights of a selected power transmission tower and scattering algorithm results give existence and location of the transmission towers but not actual tower heights.

  • PDF

AUTOMATIC GENERATION OF BUILDING FOOTPRINTS FROM AIRBORNE LIDAR DATA

  • Lee, Dong-Cheon;Jung, Hyung-Sup;Yom, Jae-Hong;Lim, Sae-Bom;Kim, Jung-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.637-641
    • /
    • 2007
  • Airborne LIDAR (Light Detection and Ranging) technology has reached a degree of the required accuracy in mapping professions, and advanced LIDAR systems are becoming increasingly common in the various fields of application. LiDAR data constitute an excellent source of information for reconstructing the Earth's surface due to capability of rapid and dense 3D spatial data acquisition with high accuracy. However, organizing the LIDAR data and extracting information from the data are difficult tasks because LIDAR data are composed of randomly distributed point clouds and do not provide sufficient semantic information. The main reason for this difficulty in processing LIDAR data is that the data provide only irregularly spaced point coordinates without topological and relational information among the points. This study introduces an efficient and robust method for automatic extraction of building footprints using airborne LIDAR data. The proposed method separates ground and non-ground data based on the histogram analysis and then rearranges the building boundary points using convex hull algorithm to extract building footprints. The method was implemented to LIDAR data of the heavily built-up area. Experimental results showed the feasibility and efficiency of the proposed method for automatic producing building layers of the large scale digital maps and 3D building reconstruction.

  • PDF

Calibration Slope Adjustment for De-Striping KOMPSAT-1 EOC Images

  • Kang, C.H.;Park, D.J.;Ahn, S.I.;Koo, I.H.;Hyun, D.H.;Yang, H.M.;Kim, D.S.;Keum, J.H.;Choi, H.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1406-1408
    • /
    • 2003
  • KOMPSAT-1 (KOrea Multi-Purpose SATellite ? 1) EOC (Electro Optic Camera) raw images are radiometrically corrected on ground based on the characteristics of EOC. They consist of each CCD (Charge?Coupled Device) pixel’s calibration slope which was measured on ground, electrical gains which are applied to amplify for increasing output pixel counts. Currently, radio-metrically corrected EOC images with calibration slope have still shown defective features by residual stripes. So, it should be compensated by adjusting the calibration slope. In this paper, the adjustment of current calibration slope for de-striping EOC images is addressed and test results are shown.

  • PDF

Object oriented linking of GIS to assess ground water quality in Dharmapuri district, India

  • Devi, K.K.Manjula;M, Prashanthi Devi.;Kumar, D. Nandha;Balasubramanian, S
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1439-1441
    • /
    • 2003
  • The World Health Organisation has identified ‘Fluorosis’as a serious bone disease caused by groundwater. Though the fluoride content in groundwater is a natural phenomenon, when the permissible limit of fluoride is exceeded the consequences may be fatal. This study is identified areas of high fluoride content in the Dharmapuri district of India, which is one of the major districts severely affected by fluorosis (WHO). The approach to this problem is by using GIS as a tool to locate areas of high risk. Ground Water samples collected from 35 randomly located wells (open / bore wells) in the district were analysed for fluoride content. The results were compared with the standards of WHO (World Health Organisation ), ICMR (Indian Council of Medical Research ), BIS (Bureau of Indian Standard) and PHE (Public Health Engineering) and interpolated using IDW and spline methods using Arcview GIS 3.2 a. A computer based automated information system was developed in Arcview Avenue 3.2a, so as to enable the user to visit the risk areas at his desktop and to remediate measures as and when required.

  • PDF

Rice Crop Monitoring Using RADARSAT

  • Suchaichit, Waraporn
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.37-37
    • /
    • 2003
  • Rice is one of the most important crop in the world and is a major export of Thailand. Optical sensors are not useful for rice monitoring, because most cultivated areas are often obscured by cloud during the growing period, especially in South East Asia. Spaceborne Synthetic Aperture Radar (SAR) such as RADARSAT, can see through regardless of weather condition which make it possible to monitor rice growth and to retrieve rice acreage, using the unique temporal signature of rice fields. This paper presents the result of a study of examining the backscatter behavior of rice using multi-temporal RADARSAT dataset. Ground measurements of paddy parameters and water and soil condition were collected. The ground truth information was also used to identify mature rice crops, orchard, road, residence, and aquaculture ponds. Land use class distributions from the RADARSAT image were analyzed. Comparison of the mean DB of each land use class indicated significant differences. Schematic representation of temporal backscatter of rice crop were plotted. Based on the study carried out in Pathum Thani Province test site, the results showed variation of sigma naught from first tillering vegatative phase until ripenning phase. It is suggested that at least, three radar data acquisitions taken at 3 stages of rice growth circle namely; those are at the beginning of rice growth when the field is still covered with water, in the ear differentiation period, and at the beginning of the harvest season, are required for rice monitoring. This pilot project was an experimental one aiming at future operational rice monitoring and potential yield predicttion.

  • PDF

Seasonal Variations of Direct Solar Irradiance with Ground and Air Atmospheric Data Fusion for Peninsular Type Coastal Area (지상 및 고도별 대기측정 자료 융합을 이용한 반도형 해안지역의 직달일사량 계절 변화 연구)

  • Choi, Ji Nyeong;Lee, Sanghee;Seong, Sehyun;Ahn, Ki-Beom;Kim, Sug-Whan;Kim, Jinho;Park, Sanghyun;Jang, Sukwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.411-423
    • /
    • 2020
  • Localized solar irradiance is normally derived from atmospheric transmission influenced by atmospheric composition and conditions of the target area. Specially, for the area with complex coastal lines such as Taean gun, the accurate estimation of solar irradiance requires for in depth analysis of atmospheric transmission characteristics based on the localized vertical profiles of the key atmospheric parameters. Using MODTRAN (MODerate resolution atmospheric TRANsmission) 6, we report a computational study on clear day atmospheric transmission and direct solar irradiance estimation of Taean gun using the data collected from 3 ground stations and radiosonde measurement over 93 clear days in 2018. The MODTRAN estimated direct solar irradiance is compared with the measurement. The results show that the normalized residual mean (NRM) is 0.28 for the temperature based MODTRAN atmospheric model and 0.32 for the pressure based MODTRAN atmospheric model. These values are larger than 0.1~0.2 of the other study and we understand that such difference represents the local atmospheric characteristics of Taean gun. The results also show that NRM tends to increase noticeably in summer as the temperature increases. Such findings from this study can be very useful for estimation and prediction of the atmospheric condition of the local area with complex coastal lines.

An Improved Validation Technique for the Temporal Discrepancy when Estimated Solar Surface Insolation Compare with Ground-based Pyranometer: MTSAT-1R Data use (표면도달일사량 검증 시 발생하는 시간 불일치 조정을 통한 정확한 일사량 검증: MTSAT-1R 자료 이용)

  • Yeom, Jong-Min;Han, Kyung-Soo;Lee, Chang-Suk;Kim, Do-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.605-612
    • /
    • 2008
  • In this study, we estimate solar surface insolation (SSI) by using physical methods with MTSAT-1R data. SSI is regarded as crucial parameter when interpreting solar-earth energy system, climate change, and agricultural production predict application. Most of SSI estimation model mainly uses ground based-measurement such as pyranometer to tune the constructed model and to validate retrieved SSI data from optical channels. When compared estimated SSI with pyranometer measurements, there are some systemic differences between those instruments. The pyranometer data observed upward-looking hemispherical solid angle and distributed hourly measurements data which are averaged every 2 minute instantaneous observation. Whereas MTSAT-1R channels data are taken instantaneously images at fixed measurement time over scan area, and are pixel-based observation with a much smaller solid angle view. Those temporal discrepancies result from systemic differences can induce validation error. In this study, we adjust hour when estimate SSI to improve the retrieved accurate SSI.

Automatic Generation of Clustered Solid Building Models Based on Point Cloud (포인트 클라우드 데이터 기반 군집형 솔리드 건물 모델 자동 생성 기법)

  • Kim, Han-gyeol;Hwang, YunHyuk;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1349-1365
    • /
    • 2020
  • In recent years, in the fields of smart cities and digital twins, research on model generation is increasing due to the advantage of acquiring actual 3D coordinates by using point clouds. In addition, there is an increasing demand for a solid model that can easily modify the shape and texture of the building. In this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. Accordingly, in this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. In the first step, the ground points were removed through the planarity analysis of the point cloud. In the second step, building area was extracted from the ground removed point cloud. In the third step, detailed structural area of the buildings was extracted. In the fourth step, the shape of 3D building models with 3D coordinate information added to the extracted area was created. In the last step, a 3D building solid model was created by giving texture to the building model shape. In order to verify the proposed method, we experimented using point clouds extracted from unmanned aerial vehicle images using commercial software. As a result, 3D building shapes with a position error of about 1m compared to the point cloud was created for all buildings with a certain height or higher. In addition, it was confirmed that 3D models on which texturing was performed having a resolution of less than twice the resolution of the original image was generated.