• Title/Summary/Keyword: ground state solutions

Search Result 33, Processing Time 0.021 seconds

The ground reaction curve of underwater tunnels considering seepage forces (침투력을 고려한 터널의 지반반응곡선)

  • Shin, Young-Jin;Kim, Byoung-Min;Shin, Jong-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.183-204
    • /
    • 2007
  • When a tunnel is excavated below groundwater table, the groundwater flows into the excavated wall of tunnel and seepage forces are acting on the tunnel wall. Such seepage forces significantly affect the ground reaction curve which is defined as the relationship between internal pressure and radial displacement of tunnel wall. In this paper, seepage forces arising from the ground water flow into a tunnel were estimated quantitatively. Magnitude of seepage forces was decided based on hydraulic gradient distribution around tunnel. Using these results, the theoretical solutions of ground reaction curve with consideration of seepage forces under steady-state flow were derived. A no-support condition and a supported condition with grouted bolts and shotcrete lining were considered, respectively. The theoretical solution derived in this study was validated by numerical analysis. The changes in the ground reaction curve according to various cover depths and groundwater table conditions were investigated. Based on the results, the application limit of theoretical solutions was suggested.

  • PDF

Fluorescence Intensity Changes for Anthrylazacrown Ethers by Paramagnetic Metal Cations

  • 장정호;김해중;박중희;신영국;정용석
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.7
    • /
    • pp.796-800
    • /
    • 1999
  • Three anthrylazacrown ethers in which the anthracene fluorophore π system is separated from the electron donor atoms by one methylene group were synthesized, and their photophysical study was accomplished. These fluorescent compounds showed a maximum fluorescence intensity at pH=5 in aqueous solutions and a decrease in fluorescence intensity upon binding of paramagnetic metal cations (Mn 2+ (d 5 ), Co 2+ (d 7 ), Cu 2+ (d 9 )). The decrease in fluorescence intensity may be attributed to the paramagnetic effect of metal cations to deactivate the excited state by the nonradiative quenching process. The benzylic nitrogen was found to play an important role in changing fluorescence intensity. From the observed linear Stern-Volmer plot and the fluorescence lifetime independence of the presence of metal ions, it was inferred that the chelation enhanced fluorescence quenching (CHEQ) mechanism in the system is a ground state static quenching process. Enhanced fluorescence was also observed when an excess Na + ion was added to the quenched aqueous solution, and it was attributed to cation displacement of a complexed fluorescence quencher.

Failure Mechanism of NATM tunneling using Computational Methods and Geology Investigation (수치해석수법과 지질공학적 분석을 통한 NATM터널의 붕괴메커니즘에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Choi, Hea-Jun;Jeong, Yun-Young;Jin, Guang-Ri;Rim, Hong-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.742-753
    • /
    • 2008
  • Currently an increasing number of urban tunnels with small overburden are excavated according to the principle of the New Austrian Tunneling Method (NATM). Therefore, a possibility of a tunnel collapse during excavation is getting higher in a proportionate manner. This paper will analyze causes the failure mechanism of a shallow NATM tunnel for different geological conditions, ground-water and invert solutions by investigation typical collapse site during tunnel construction. In this paper, this analysis performed two phase, firstly, the field investigation considering displacement measurement, ground-water level, geological characteristic, secondly, the numerical simulation considering the exist of invert construction and the effect of ground-water. It has been found that environmental factors such as state of underground water or construction sequences could influence failure mechanism of a shallow tunnel.

  • PDF

Excited State Intramolecular Proton Transfer and Physical Properties of 7-Hydroxyquinoline

  • Kang Wee-Kyeong;Cho Sung-June;Lee Minyung;Kim Dong-Ho;Ryoo Ryong;Jung Kyung-Hoon;Jang Du-Jeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.140-145
    • /
    • 1992
  • The excited state intramolecular proton transfer and physical properties of 7-hydroxyquinoline are studied in various solutions and heterogeneous systems by measuring steady state and time-resolved fluorescence, reflection and NMR spectra. Proton transfer is observed only in protic solvents owing to its requirement of hydrogen-bonded solvent bridge for proton relay transfer. The activation energies of the proton transfer are 2.3 and 5.4 kJ/mol in $CH_3OH$ and in $CH_3OD$, respectively. Dimers of normal molecules are stable in microcrystalline powder form and undergo an extremely fast concerted double proton transfer upon absorption of a photon, consequently forming dimers of tautomer molecules. In the supercage of zeolite NaY, its tautomeric form is stable in the ground state and does not show any proton transfer.

Multidimetional Uniform Semiclassical (WKB) Solutions for Nonseparable Problems (다차원 비분리계의 균일준고전적 해법)

  • Byung C. Eu
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.202-220
    • /
    • 1978
  • Uniform semiclassical (WKB) solutions are obtained for nonseparable systems without using a close coupling formalism and are given explicitly in terms of well known analytic functions for various physically interesting and realistic cases. They do not become singular at turning points or surfaces and when taken in their asymptotic forms, they reduce to the usual WKB solutions that could be obtained if the Stokes phenomenon was properly taken care of for solutions. In obtaining such uniform solutions, the Schroedinger equations for nonseparable systems are suitably "renormalized" to solvable "normal" forms through certain transformations. Ehrenfest's adiabatic principle plays an important guiding role for obtaining such "renormalized" uniform solutions for nonseparable systems. The eigenvalues of the Hamiltonian can be calculated from the extended Bohr-Sommerfeld quantization rules when appropriate classical trajectories are obtained. An application is made to many-electron systems and for one of the simplest examples to show the utility of the method the approximate wavefunction is calculated of the ground state helium atom.

  • PDF

Absorption and Fluorescence of Sm(III) Complexes with some Terdentate Ligands

  • Kim, Jong-Goo;Yoon, Soo-Kyung;Yun, Sock-Sung;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.54-59
    • /
    • 1992
  • Spectroscopic measurements and theoretical calculations are performed for the four 1 : 3 Sm(III) : ligand solutions. The ligands included in this study are oxidiacetate, iminodiacetate, methyliminodiacetate and dipicolinate. The oscillator strengths for the $4f{\to}4f$ multiplet-to-multiplet transitions are empirically determined from the absorption spectra. The intensity parameters ${\Omega}_{\lambda}\;({\lambda}=2,\;4,\;6)$ of $Sm^{3+}$(aquo) and ${SmL_3}^{3-}$ complexes are also evaluated by applying the Judd-Ofelt theorem to the observed oscillator strengths. The values of the intensity parameters are compared and discussed in term of structural properties of the complexes. In addition, the fluorescence spectra are reported for the Sm(III) complex systems under mild alkaline condition. The excitation from the $^6H_{5/2}$ ground state to any excited states lying above the emitting energy level $(^4G_{5/2})$ produces four fluorescence bands, following nonradiative transitions from a certain excited state to the $^4G_{5/2}$ state. The ratios of oscillator strengths of ${SmL_3}^{3-}$ complexes to that of $Sm^{3+}$(aquo) are also evaluated from the fluorescence spectra and compared to the results obtained from the absorption bands.

Factors Influencing Cost Overruns in Construction Projects of International Contractors in Vietnam

  • VU, Thong Quoc;PHAM, Cuong Phu;NGUYEN, Thu Anh;NGUYEN, Phong Thanh;PHAN, Phuong Thanh;NGUYEN, Quyen Le Hoang Thuy To
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.389-400
    • /
    • 2020
  • A construction project is a designed product made up of labors, materials, and installations in the project positioned on the ground and may include the underground and ground section, and the section in water or on the water surface. It is a civil, industrial, transport, agricultural and rural development, infrastructure, or some other. A key phase in the life cycle of these construction projects is the implementation when building products are made directly with workers, equipment, materials, and managers. If there is a lack of management experience, information, and problem-solving solutions to tackle the risks faced by contractors, especially foreign ones, will fail in controlling the project's cost. This study was conducted with investigations, discussions, and evaluation of the factors that lead to cost overruns in the construction projects of international contractors in Vietnam. The principal component analysis (PCA) showed that those factors that influence cost overruns these construction projects fall into five general groups, including factors related to (i) the owners, (ii) the foreign contractors, (iii) the subcontractors and suppliers, (iv) state management, and (v) the project itself. Besides, the study proposes solutions to limit cost overruns in construction projects and improve the profitability of international contractors in Vietnam.

Stability Analysis of Tunnels Excavated in Squeezing Rock Masses (압출 암반내 굴착된 터널의 안정성해석)

  • 정소걸
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.245-259
    • /
    • 2003
  • Refering to the articles "Squeezing rocks in tunnels(Barla, 1995)" and "Tunnelling under squeezing rock conditions(Barla 2002)" this article deals with technologies for design, stability analysis and construction of the tunnel being driven in the squeezing rock mass. The definition of this type of behavior was proposed by ISRM(1994). The identification and quantification of squeezing is given according to both the empirical and semi-empirical methods available to anticipate the potential of squeezing problems in tunnelling. Based on the experiences and lessons learned in recent years, the state of the art in modem construction methods was reported, when dealing with squeezing rock masses by either conventional or mechanical excavation methods. The closed-form solutions available for the analysis of the rock mass response during tunnel excavation are described in terms of the ground characteristic line and with reference to some elasto-plastic models for the given rock mass. Finally numerical methods were used for the simulation of different models and for design analysis of complex excavation and support systems, including three-dimensional conditions in order to quantify the influence of the advancing tunnel face to the deformation behavior of the tunnel.

Characteristic Analysis of Voltage Sags Due to Faulted Distribution Lines (배전선로 고장에 의한 Voltage Sag의 특성 해석)

  • ;Madhat M. Morcos
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.76-84
    • /
    • 2002
  • Voltage sags caused by line faults in transmission and distribution lines have become one of the most important power quality problems facing industrial customers and utilities. Voltage sags are normally described by characteristics of both magnitude and duration, but phase angle shifts should be taken account in identifying sag phenomena and finding their solutions. In this paper, voltage sags due to line faults such as three phase-to-ground, single line-to-ground, and line-to-line faults are characterized by using symmetrical component analysis, for fault impedance variations. Voltage sags and their effect on the magnitude and phase angle are examined. Balanced sags of three phase-to-ground faults show that voltages and currents are changed with equivalent levels to all phases and the zero sequence components become zero. However, for unbalanced faults such as single line-to-ground and line-to-line faults, voltage sags give different magnitude variations and phase angle shifts for each phase. In order to verify the analyzed results, some simulations based on power circuit models are also discussed.

EXISTENCE AND CONCENTRATION RESULTS FOR KIRCHHOFF-TYPE SCHRÖ DINGER SYSTEMS WITH STEEP POTENTIAL WELL

  • Lu, Dengfeng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.661-677
    • /
    • 2015
  • In this paper, we consider the following Kirchhoff-type Schr$\ddot{o}$dinger system $$\{-\(a_1+b_1{\int}_{\mathbb{R^3}}{\mid}{\nabla}u{\mid}^2dx\){\Delta}u+{\gamma}V(x)u=\frac{2{\alpha}}{{\alpha}+{\beta}}{\mid}u{\mid}^{\alpha-2}u{\mid}v{\mid}^{\beta}\;in\;\mathbb{R}^3,\\-\(a_2+b_2{\int}_{\mathbb{R^3}}{\mid}{\nabla}v{\mid}^2dx\){\Delta}v+{\gamma}W(x)v=\frac{2{\beta}}{{\alpha}+{\beta}}{\mid}u{\mid}^{\alpha}{\mid}v{\mid}^{\beta-2}v\;in\;\mathbb{R}^3,\\u,v{\in}H^1(\mathbb{R}^3),$$ where $a_i$ and $b_i$ are positive constants for i = 1, 2, ${\gamma}$ > 0 is a parameter, V (x) and W(x) are nonnegative continuous potential functions. By applying the Nehari manifold method and the concentration-compactness principle, we obtain the existence and concentration of ground state solutions when the parameter ${\gamma}$ is sufficiently large.