• 제목/요약/키워드: ground state properties

검색결과 173건 처리시간 0.027초

수평배수재 배열의 진공압밀효과에 대한 수치해석 (Numerical Analysis on Effects of Horizontal Drain Arrangement of Vacuum Consolidation)

  • 박병수;정길수;이종호;유남재
    • 산업기술연구
    • /
    • 제23권A호
    • /
    • pp.109-118
    • /
    • 2003
  • This paper is results of numerical works of investigating effects of horizontal drain arrangements on vacuum consolidation. Extensive numerical analyses were carried out to find the appropriate arrangements of horizontal drain of vacuum consolidation. Commercially available program of CRISP, well known to be good to modelling the behavior of clay material, was used Cam-clay model, based on the Critical State of Soil Mechanics(CSSM), was used to simulate the geotechnical engineering behavior of clay. Model test results carried out previously in the laboratory were compared with numerically estimated results and it was found that results about consolidational settlement with times were in good agreements. Based on this confirmation, parametric numerical study was performed to investigate effects of horizontal drain arrangements on vacuum consolidation with changing the vertical and horizontal spacings between drains for the given soil properties and vacuum. The effect of distance of drain located in top layer from the surface of the ground on the settlement due to vacuum was also investigated. As a results of numerical analyses, appropriate arrangements of horizontal drain to maximize the consolidation settlement due to vacuum were found. The mechanism of vacuum consolidation about the vacuum pressures being transferred to the effective stresses around drains was also evaluated.

  • PDF

COSMOLOGY WITH MASSIVE NEUTRINOS: CHALLENGES TO THE STANDARD ΛCDM PARADIGM

  • ROSSI, GRAZIANO
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.321-325
    • /
    • 2015
  • Determining the absolute neutrino mass scale and the neutrino mass hierarchy are central goals in particle physics, with important implications for the Standard Model. However, the final answer may come from cosmology, as laboratory experiments provide measurements for two of the squared mass differences and a stringent lower bound on the total neutrino mass - but the upper bound is still poorly constrained, even when considering forecasted results from future probes. Cosmological tracers are very sensitive to neutrino properties and their total mass, because massive neutrinos produce a specific redshift-and scale-dependent signature in the power spectrum of the matter and galaxy distributions. Stringent upper limits on ${\sum}m_v$ will be essential for understanding the neutrino sector, and will nicely complement particle physics results. To this end, we describe here a series of cosmological hydrodynamical simulations which include massive neutrinos, specifically designed to meet the requirements of the Baryon Acoustic Spectroscopic Survey (BOSS) and focused on the Lyman-${\alpha}$ ($Ly{\alpha}$) forest - also a useful theoretical ground for upcoming surveys such as SDSS-IV/eBOSS and DESI. We then briefly highlight the remarkable constraining power of the $Ly{\alpha}$ forest in terms of the total neutrino mass, when combined with other state-of-the-art cosmological probes, leaving to a stringent upper bound on ${\sum}m_v$.

CaWO4:Sm3+ 형광체의 합성과 발광특성 (Luminescent Characteristics and Synthesis of Sm3+-Doped CaWO4 Phosphors)

  • 류종항;윤소진;유일
    • 한국재료학회지
    • /
    • 제24권7호
    • /
    • pp.339-343
    • /
    • 2014
  • $CaWO_4:Sm_x$(x = 0, 0.5, 1.0, 1.5, 2.0 mol%) white phosphors with different concentrations of $Sm^{3+}$ ions were synthesized using the hydrothermal method. The crystal structure, surface, and optical properties of the $CaWO_4:Sm_x$ phosphors were investigated using X-ray diffraction(XRD), field-emission scanning electron microscopy(FE-SEM), photoluminescence(PL) and photoluminescence excitation(PLE). From the XRD results, the crystal structure of the $CaWO_4:Sm$ phosphors was found to be tetragonal. The $CaWO_4:Sm$ phosphors became more cohesive with increasing $Sm^{3+}$-ion concentration. The photoluminescence excitation(PLE) peak of the phosphors, at around 250 nm, was ascribed to the transition from the 1A1 ground-state to the high-vibration level of 1T2 in the $WO{_4}^{2-}$ complex. The maximum emission spectra of the phosphors were observed when the $Sm^{3+}$ concentration was 0.5 mol%. The luminescence intensity of the $CaWO_4$ phosphors was decreased for $Sm^{3+}$ concentrations greater than 0.5 mol%.

Antiferroelectric and antiferrodistortive phase transitions in Ruddlesden-Popper Pb2TiO4 from first-principles

  • Xu, Tao;Shimada, Takahiro;Wang, Jie;Kitamura, Takayuki
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.29-40
    • /
    • 2017
  • This work employed density functional theory to investigate the structural and ferroelectric properties of the Ruddlesden-Popper (RP) phase of lead titanate, $Pb_2TiO_4$, as well as its phase transitions with epitaxial strain. A wealth of novel structural instabilities, which are absent in the host $PbTiO_3$ material, were identified in the RP phase through phonon soft-mode analysis. Our calculations showed that the ground state of $Pb_2TiO_4$ is antiferroelectric, distinct from the dominant ferroelectric phase in the corresponding host material. In addition, applied epitaxial strain was found to play a key role in the interactions among the instabilities. The induction of a sequence of antiferroelectric and antiferrodistortive (AFD) phase transitions by epitaxial strain was demonstrated, in which the ferroic instability and AFD distortion were cooperative rather than competitive, as is the case in the host $PbTiO_3$. The RP phase in conjunction with strain engineering thus represents a new approach to creating ferroic orders and modifying the interplay among structural instabilities in the same constituent materials, enabling us to tailor the functionality of perovskite oxides for novel device applications.

Up-conversion Luminescence Characterization of CeO2:Ho3+/Yb3+ Particles Prepared by Spray Pyrolysis

  • Jung, Kyeong Youl;Min, Byeong Ho;Kim, Dae Sung;Choi, Byung-Ki
    • Current Optics and Photonics
    • /
    • 제3권3호
    • /
    • pp.248-255
    • /
    • 2019
  • Spherical $CeO_2:Ho^{3+}/Yb^{3+}$ particles were synthesized using spray pyrolysis, and the upconversion (UC) properties were investigated with changing the preparation conditions and the infrared pumping power. The resulting particles had a size of about $1{\mu}m$ and hollow structure. The prepared $CeO_2:Ho^{3+}/Yb^{3+}$ particles exhibited intense green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$ and showed weak red or near-IR peaks. In terms of achieving the highest UC emission, the optimal concentrations of $Ho^{3+}$ and $Yb^{3+}$ were 0.3% and 2.0%, respectively. The UC emission intensity of prepared $CeO_2:Ho^{3+}/Yb^{3+}$ particles had a linear relationship with crystallite size and concentration quenching was caused by dipole-dipole interaction between the same ions. Based on the dependency of UC emission on the pumping power, the observed green upconversion was achieved through a typical two-photon process and concluded that the main energy transfer from $Yb^{3+}$ to $Ho^{3+}$ was involved in the ground-state adsorption (GSA) process.

고로슬래그 미분말 및 순환잔골재를 적용한 PVA섬유 보강 철근콘크리트 보의 구조성능 평가 (Evaluation of Structural Performance of RC Beams retrofitted PVA Fiber to the Change of Replacement Ratio of Recycled Fine Aggregates and Blast Furnace Slag)

  • 하기주;이동렬;하재훈
    • 대한건축학회논문집:구조계
    • /
    • 제34권8호
    • /
    • pp.3-11
    • /
    • 2018
  • In this study, total nine R/C beams, designed by the PVA Fiber with ground granulated blast furnace slag and recycled fine aggregate were constructed and tested under monotonic loading. In the material development, micromechanics was adopted to properly select the optimized range of the composite based on steady-state cracking theory and experimental studies on the matrix and interracial properties. Experimental programs were carried out to improve and evaluate the structural performance of the test specimens: the load-displacement, the failure mode, the maximum strength, and ductility capacity were assessed. Test results showed that test specimens (BSPR-20, 40) was increased the maximum load carrying capacity by 3~6% and the ductility capacity by 9~14% in comparison with the standard specimen (BSS). And the specimens (BSPR-60, 80, 100) was decreased the maximum load carrying capacity by 0~4% and the ductility capacity by 79% in comparison with the standard specimen (BSS) respectively.

산업부산물과 순환잔골재를 적용한 강섬유 보강 철근콘크리트 보의 구조성능 평가 (Evaluation of Structural Performance of Steel Fiber Reinforced Concrete Beams using Industrial By-products and Recycled Fine Aggregates)

  • 하기주;이동렬;하재훈
    • 대한건축학회논문집:구조계
    • /
    • 제34권11호
    • /
    • pp.11-18
    • /
    • 2018
  • In this study, seven R/C beams, designed by the steel fiber with ground granulated blast furnace slag and recycled fine aggregate were constructed and tested under monotonic loading. In the material development, micromechanics was adopted to properly select the optimized range of the composite based on steady-state cracking theory and experimental studies on the matrix and interracial properties. Experimental programs were carried out to improve and evaluate the structural performance of the test specimens: the load-displacement, the failure mode, the maximum strength were assessed. Test results showed that test specimens (BSSR-20, 40, 60, 80) were increased the maximum load carrying capacity by 2~9% and the ductility capacity by 10~22% in comparison with the standard specimen (BSS) respectively. And the specimens (BSSR-100) was decreased the maximum load carrying capacity by 5% and the ductility capacity by 44% in comparison with the standard specimen (BSS) respectively.

Experimental study of dynamic interaction between group of intake towers and water

  • Wang, Haibo;Li, Deyu;Tang, Bihua
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.163-179
    • /
    • 2014
  • Dynamic test with scaled model of a group of intake towers was performed to study the dynamic interaction between water and towers. The test model consists of intake tower or towers, massless foundation near the towers and part of water to simulate the dynamic interaction of tower-water-foundation system. Models with a single tower and 4 towers were tested to find the different influences of the water on the tower dynamic properties, seismic responses as well as dynamic water-tower interaction. It is found that the water has little influence on the resonant frequency in the direction perpendicular to flow due to the normal force transfer role of the water in the contraction joints between towers. By the same effect of the water, maximum accelerations in the same direction on 4 towers tend to close to each other as the water level increased from low to normal level. Moreover, the acceleration responses of the single tower model are larger than the group of towers model in both directions in general. Within 30m from the surface of water, hydrodynamic pressures were quite close for a single tower and group of towers model at two water levels. For points deeper than 30m, the pressures increased about 40 to 55% for the group of towers model than the single tower model at both water levels. In respect to the pressures at different towers, two mid towers experienced higher than two side towers, the deeper, the larger the difference. And the inside hydrodynamic pressures are more dependent on ground motions than the outside.

Polymer Phosphorescence Device using a New Green Emitting Ir(III) Complex

  • Lee, Chang-Lyoul;Das, Rupasree Ragini;Noh, Yong-Young;Kim, Jang-Joo
    • Journal of Information Display
    • /
    • 제3권1호
    • /
    • pp.6-10
    • /
    • 2002
  • We have synthesized a new green Ir(III) complex fac-tris-(3-methyl-2-phenyl pyridine)iridium(III) $Ir(mpp)_3$ and fabricated phosphorescent polymer light-emitting device using it as a triplet emissive dopant in PVK. $Ir(mpp)_3$ showed absorption centered at 388 nm corresponding to the $^1MLCT$ transition as .evidenced by its extinction coefficient of the order of $10^3{\cdot}$ From the PL and EL spectra of the $Ir(mpp)_3$ doped PVK film, the emission maximum was observed at 523 nm, due to the radiative decay from the $^3MLCT$ state to the ground state, confirming a complete energy transfer from PVK to $Ir(mpp)_3$. The methyl substitution has probably caused a red shift in the absorption and emission spectrum compared to $Ir(mpp)_3$. The device consisting of a 2 % doped PVK furnished 4.5 % external quantum efficiency at 72 $cd/m^2$ (current density of 0.45 $mA/cm^2$ and drive voltage of 13.9 V) and a peak luminance of 25,000 $cd/m^2$ at 23.4 V (494 $mA/cm^2$). This work demonstrates the impact of the presence of a methyl substituent at the 3-position of the pyridyl ring of 2-phenylpyridine on the photophysical and electroluminescence properties.

쉴드 터널 세그먼트 라이닝의 내진설계를 위한 신뢰성해석 (Reliability analysis for design of shield tunnel segment lining under earthquake load)

  • 박영빈;김도;변요셉;이규필
    • 한국터널지하공간학회 논문집
    • /
    • 제22권3호
    • /
    • pp.249-259
    • /
    • 2020
  • 지중 구조물의 한계상태설계를 위한 설계 기준이 해외에서는 이미 발표된 바 있고 국내에서도 설계법 개정을 위한 연구가 수행되고 있다. 지진 시 파괴확률을 추정하기 위해서는 신뢰성 분석에서 확률변수를 고려해야 한다. 본 연구에서는 국내 지반 확률 특성치를 고려한 토압에 대한 변동계수와 지진하중 효과에 대한 변동계수를 적용하여 기존 쉴드 터널 설계 단면에 대한 지진 시 파괴확률을 계산하였다. 산정된 파괴확률로부터 신뢰도지수(β)를 산정하고 하중 계수의 변화에 따른 신뢰도지수를 분석한 결과와 국내외 연구결과를 토대로 쉴드 터널 세그먼트 라이닝의 지진 시 목표 신뢰도지수(βT)는 2.3이 합리적인 것으로 분석되어, 지진 시 한계상태설계를 위한 목표 신뢰도 지수로 제안하였다.