• 제목/요약/키워드: ground roll

검색결과 80건 처리시간 0.023초

공기부상 초고속 운행체 축소모델의 풍동내 비행제어 실험 (Flight Control Experiment of High-Speed Aero-Levitation Electric Vehicle Scale-Model in Wind-Tunnel)

  • 박영근;최승기;조진수;송용규
    • 제어로봇시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.246-253
    • /
    • 2005
  • An experimenal study on flight control of high-speed AEV(Aero-levitation Electric Vehicle) scale model in wind-tunnel is conducted. The AEV is to fly at very low altitude in predesigned track so that it is always under the wing-in-ground effect. The experiment is intended to fly the scale model to follow the predesigned altitude schedule while holding its attitude (pitch, roll, and yaw). Especially, the altitude changes for climb, cruise, and descent with constant pitch angle are most important maneuvers. The experiment shows that the required mission flights can be performed with appropriate sensors, processors, and actuators.

Experimental and Improved Numerical Studies on Aerodynamic Characteristics of Low Aspect Ratio Wings for a Wing-In Ground Effect Ship

  • Ahn, Byoung-Kwon;Kim, Hyung-Tae;Lee, Chang-Sup;Lew, Jae-Moon
    • Journal of Ship and Ocean Technology
    • /
    • 제12권3호
    • /
    • pp.14-25
    • /
    • 2008
  • Recently, there has been a serious effort to design a wing in ground effect (WIG) craft. Vehicles of this type might use low aspect ratio wings defined as those with smaller than 3. Design and prediction techniques for fixed wings of relatively large aspect ratio are reasonably well developed. However, Aerodynamic problems related to vortex lift on wings of low aspect ratio have made it difficult to use existing techniques. In this work, we firstly focus on understanding aerodynamic characteristics of low aspect ratio wings and comparing the results from experimental measurements and currently available numerical predictions for both inviscid and viscous flows. Second, we apply an improved numerical method, "B-spline based high panel method with wake roll-up modeling", to the same problem.

Hardware-In-the-Loop Simulation for Development of Fin Stabilizer

  • Yoon, Hyeon Kyu;Lee, Gyeong Joong
    • International Journal of Ocean System Engineering
    • /
    • 제3권1호
    • /
    • pp.10-15
    • /
    • 2013
  • A ship cruising in the ocean oscillates continuously due to wave action. In order to reduce the ship's roll, we developed a fin stabilizer as an anti-rolling device for a 500-ton-class high-speed marine vessel. During the development phase, it was necessary to set up control gains for the motion and hydraulic systems and assess the effectiveness of the anti-rolling performance on the ground. For this reason, a Target Simulator, which simulated the ship's motion, was given operator inputs such as the engine telegraph and waterjet deflection angle, and generated roll using a one-degree-of-freedom motion base. Hardware-In-the-Loop Simulation (HILS) was performed using the Target Simulator in order to confirm the various logics of the developed fin stabilizer, select initial control gains, and estimate the anti-rolling performance. In conclusion, it was confirmed that HILS was very helpful to develop the fin stabilizer because it could reduce the number of sea trial tests that were needed and could find many malfunctions in the factory a priori.

3차원 곡판 성형을 위한 비정형롤러의 형태에 따른 성형성 평가 (Evaluation of Formability Dependent on Reconfigurable Roller Types for 3D Curved Sheet Forming)

  • 손소은;윤준석;김형호;김정;강범수
    • 소성∙가공
    • /
    • 제25권1호
    • /
    • pp.12-20
    • /
    • 2016
  • Press machines and dies are commonly used for 3D curved sheet forming. Using conventional die forming can cause economic problems since various modifications of the die shape are required depending on the product shape. Various types of flexible forming such as multi-point dieless forming (MDF), flexible incremental roll forming have been developed to improve the needed process flexibility. Although MDF can reduce the production cost using reconfigurable dies, it still has significant material loss. Drawbacks such as wrinkling, dimpling, and forming errors can also occur despite continuous investigations to mitigate these defects. A novel sheet forming process for 3D curved surfaces, a flexibly-reconfigurable roll forming (FRRF), has been recently proposed to overcome the economic and technical limitations of current practice. FRRF has no limitation on blank size in the longitudinal direction, and also minimizes or eliminates forming defects such as wrinkling and dimpling. Feasibility studies of FRRF have been conducted using FE simulations for multi-curved shapes and various sheet thicknesses. Therefore, the fabrication of a FRRF apparatus is required for any follow-up studies. In the current study, experiments with reconfigurable rollers were conducted using a simple design pre-FRRF apparatus prior to fabricating the full size FRRF apparatus. There are three candidates for the reconfigurable roller: a bar-type shaft, a flexible shaft, a ground flexible shaft. Among these candidates, the suitable reconfigurable roller for FRRF is determined through various forming tests.

비대칭 무장 형상의 조종성 개선에 관한 연구 (A Study on Improvement of Aircraft Handling Quality for Asymmetric Loading Configuration)

  • 김종섭;배명환;황병문
    • 한국항공우주학회지
    • /
    • 제33권2호
    • /
    • pp.106-112
    • /
    • 2005
  • 현대의 고성능 전투기는 공대공 및 공대지 전투 임무를 수행하기 위해 여러 가지 무장 형상을 하고 있고, 무장투하 시 비대칭 형상(Asymmetric Configuration)으로 임무를 수행하는 경우가 많다. 현재, 개발이 진행 중인 T-50 훈련기의 비대칭 무장형상 비행시험에서 세로축 기동 시 가로축 방향으로 조종사가 원하지 않는 운동이 발생하는데, 이는 항공기 안정성 및 조종성에 영향을 미칠 수 있다. 본 연구에서는 이러한 현상을 개선하기 위하여 기존의 가로축 제어법칙인 미끄럼각-미끄럼각속도 귀환 구조를 F-16과 같이 단순 롤각속도 귀환구조로 적용하였다. 연구결과, 단순 롤각속도 귀환구조로 가로축 제어법칙을 변경하였을 때 비대칭 무장형상에서 세로축 기동 시 가로축 운동의 발생이 줄어들었으며, 시스템의 안정도 여유는 설계기준에 만족한다는 것을 알 수 있었다.

지연된 측정치를 가진 저속 회전 유도형 탄약의 롤각 추정 및 비행 실험을 통한 검증 (Roll Angle Estimation of Slowly Rolling Guided Munition With Time-delayed Measurement and Its Verification Through Flight Experiment)

  • 박준우;안형주;정성민;노준영;홍경우;장광우;김성중;방효충;김진원;허준회;박장호;서송원
    • 한국항공우주학회지
    • /
    • 제49권5호
    • /
    • pp.373-381
    • /
    • 2021
  • 본 논문에서는 저속 롤링하는 유도형 탄약 모사체가 시간 지연된 측정치를 획득하였을 때 시간지연을 고려하여 탄약의 롤각을 추정하는 방법을 다루며 비행 실험을 통해 이를 검증한 결과를 소개한다. 수치적 안정화 및 잡음 제거를 위해 저역 통과 필터와 같은 후처리를 거친 측정치의 시간지연 정도를 사전에 파악하여 시간 지연의 분포를 모델링하며 이 분포를 활용한 증강 상태 칼만필터를 설계한다. 비행 실험에서는 대형 고정익 항공기를 이용해 표고 약 250m의 고도에서 수평방향으로 28m/s의 속력으로 탄약을 투하하였으며 탄약 내부의 반동차를 이용해 탄체를 롤축 회전시켰다. 상용 GPS/INS의 롤값과 제안한 방법으로 추정한 롤값의 비교를 통해 측정치 시간 지연보상을 반영한 필터 설계가 유효함을 보인다.

Analysis of Tilting Angle of KOMPSAT-1 EOC Image for Improvement of Geometric Accuracy Using Bundle Adjustment

  • Seo, Doo-Chun;Lee, Dong-Han;Kim, Jong-Ah;Kim, Yong-Seung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.780-785
    • /
    • 2002
  • As the KOMPSAT-1 satellite can roll tilt up to $\pm$45$^{\circ}$, we have analyzed some EOC images taken at different tilt angles fur this study. The required ground coordinates for bundle adjustment and geometric accuracy, are read from the digital map produced by the National Geography Institution, at a scale of 1:5, 000. These are the steps taken for the tilting angle of KOMPSAT-1 satellite to be present in the evaluation of the accuracy of the geometric of each different stereo image data: Firstly, as the tilting angle is different in each image, the satellite dynamic characteristic must be determined by the sensor modeling. Then the best sensor modeling equation is determined. The result of this research, the difference between the RMSE values of individual stereo images is due more the quality of image and ground coordinates than to the tilt angle. The bundle adjustment using three KOMPSAT-1 stereo pairs, first degree of polynomials for modeling the satellite position were sufficient.

  • PDF

지상 전투차량의 수상 추진 시 동적 안정성에 대한 연구 (Syudy on the dynamic Stability of Ground Armored Moving Vehicle during cruising river)

  • 안태술;이경훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.252-255
    • /
    • 2008
  • In this study, the characteristics of crossing a river of Ground Armored Vehicle (GAV) were evaluated by numerical method and real size tests. 3-D hybrid mesh systems were constructed by 3-D models of the GAV, and a commercial software, FLUENT, was used in numerical analysis. In order to deal with multi-phase problem (air and water), Volume Of Fluid (VOF) method was used, and Moving and Deforming Mesh (MDM) was adapted for unsteady motion of GAV. There were two steps in this research. Firstly, stability of the GAV which cruised a river was evaluated by changing several shapes of water-proof-front-wing of the GAV in steady state, and compared results (free surface shape and drag value in 10km/h) with those of real size tests. Secondly, results of unsteady analysis considering weight and moment of inertia of the GAV were presented. There were showed a maximum velocity with a designed water jet and dynamic stability including pitch, roll, and yaw moment. Based on these results, the optimal shape of water-proof-front-wing of the GAV was determined for a proto-type of the GAV.

  • PDF

이족 트랜스포머 로봇의 외란 대응 자세 안정화 제어 (Posture Stabilization Control of Biped Transformer Robot under Disturbances)

  • 김근태;여명훈;김정엽
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.241-250
    • /
    • 2023
  • This paper describes the posture stabilization control of a bipedal transformer robot being developed for military use. An inverted pendulum model with a rectangular that considers the robot's inertia is proposed, and a posture stabilization moment that can maintain the body tilt angle is derived by applying disturbance observer and state feedback control. In addition, vertical force and posture stabilization moments that can maintain the body height and balance are derived through QP optimization to obtain the necessary torques and vertical force for each foot. The roll and pitch angles of the IMU sensor attached to the robot's feet are reflected in the ankle joint to enable flexible adaptation to changes in ground inclination. Finally, the effectiveness of the proposed algorithm in posture stabilization is verified by comparing and analyzing the difference in body tilt angle due to disturbances and ground inclination changes with and without algorithm application, using Gazebo dynamic simulation and a down-scale test platform.

영구동토 급속안정화를 위한 롤타입강재매트의 모델링과 해석(I) - 해석모델의 수립 - (Modelling and Analysis of Roll-Type Steel Mats for Rapid Stabilization of Permafrost (I) - Modeling -)

  • 문도영;강재모;이장근;이상윤;지광습
    • 한국지반신소재학회논문집
    • /
    • 제13권4호
    • /
    • pp.97-107
    • /
    • 2014
  • 본 논문에서는 표준트럭하중을 받는 연약지반에 놓인 롤타입 강재매트의 모델링과 해석을 수행하였다. 롤 타입 강재매트는 접근성이 제한된 동토지역에서 손쉬운 현장운반을 위해 원형으로 접을 수 있는 강재매트를 의미하며, 동토지반의 융해로 형성되는 연약지반을 통과하는 비포장도로의 급속보강을 위해 개발되었다. 해석 모델은 강재매트 연결부의 비선형적 거동특성을 모사할 수 있는 연결요소, 강재매트의 휨강성을 갖는 쉘요소, 지반특성을 고려한 스프링 구속으로 구성된다. 또한 각 해석요소들의 구조적 거동은 각 모델링 단계에서 실험과 해석을 통해 검증되었다. 링크요소가 없는 빔과 쉘 요소해석이 수행되었으며, 본 연구에서 제시된 해석모델의 결과와 비교하였다. 해석결과, 본 연결부를 고려한 쉘 해석모델의 수직 처짐 결과가 다른 모델에 비하여 상당히 큰 것으로 확인되었다. 따라서, 느슨한 모래지반에 놓인 롤 타입 강재매트의 해석모델은 면밀한 변수해석 연구에 근거하여야 함을 알 수 있다.