• Title/Summary/Keyword: ground return current

Search Result 43, Processing Time 0.028 seconds

Study of the Applicability of the Carson Line Model for the Series Reactance Calculation of the Power Feeding Lines with no Ground Return (전송로의 직렬리앤턴스 산정 시 Carson 모델의 적용범위 검토)

  • Chung, Sang-Gi;Kwon, Sam-Young;Chang, Sang-Hoon;Jang, Dong-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.225-231
    • /
    • 2009
  • In this paper, it is shown that Carson's equation can still be applied for the calculation of the series reactance of transmission lines with no ground return current as well as the one with ground return. It is proved in the following method. First two voltage drop equations for three-phase three wire transmission line are derived, one without considering ground return and the other using Carson's equation. The impedance matrix of the two equations are different from each other. But if we put the condition of zero ground current, $I_a+I_b+I_c=0$, those two equations becomes the identical equations. Therefore even a transmission line is not grounded, its line parameters can still be obtained using the Carson's equation. It has been confused whether or not Carson's equation can be used for an ungrounded system. It is because where ever Carson's equation is shown in the book, it also says that the system has ground return current paths as a premise. It is also verified with EMTP studies on the test circuit.

Applicability Study of the Carson Model for the calculation of the series inductance of the power feeding lines in AC traction system (AC 전기철도 급전선 선로정수 산정시 Carson 모델 적용 검토)

  • Chung, Sang-Gi;Kwon, Sam-Young;Chang, Sang-Hoon;Chang, Dong-Uk
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.169-178
    • /
    • 2008
  • In this paper, it is shown that Carson's equation can still be applied for the calculation of the series reactance of transmission lines with no ground return current as well as the one with ground return. It is proved in the following method. First two voltage drop equations for three-phase three wire transmission line are derived, one without considering ground return and the other using Carson's equation. The impedance matrix of the two equations are different from each other. But if we put the condition of zero ground current, $I_a+I_b+I_c=0$, those two equations becomes the identical equations. Therefore even a transmission line is not grounded, its line parameters can still be obtained using the Carson's equation. It has been confused whether or not Carson's equation can be used for an ungrounded system. It is because where ever Carson's equation is shown in the book, it also says that the system has ground return current paths as a premise. It is also verified with EMTP studies on the test circuit.

  • PDF

Analysis on Voltage Rise of Rail in High speed Railway System (고속철도 시스템의 레일 전위 상승 해석)

  • 이종우
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.481-485
    • /
    • 2003
  • In electric railway system, potential of rail has been risen, for return-current flows through rail. The magnitude of rising voltage is different to railway feed system, ground admittance of rail and the load current. If rising voltage of rail is large, electric shock can be occurred to passengers and maintenance- worker, In this paper, we estimate the rising voltage of rail in high speed railway system and check the safety to human beings.

Impedance Calculation for Electric Railway System using modified Carson's Method (Modified Carson's Method를 이용한 전차선로의 Impedance 계산)

  • LEE Chunbae;KIM Wanggon;LEE Jongwoo
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1403-1405
    • /
    • 2004
  • The method proposed by Carson contains indefinite complex integral which simulates earth return current. Although the Carson solution is proposed with power series, the solution is limited and valid at special range of frequency. We proposed a simplified Carson solution by modelling earth current path analytical method using ground transmission line return current. In this paper, we studied on trying to find the equivalent distance for earth current return path.

  • PDF

Study on the Effect of Parallel Ground Conductor at the Single Point Bonding in Underground Transmission System (지중송전 편단접지개소에서의 병행지선 설치효과 검토)

  • Kang, J.W.;Park, H.S.;Yoon, H.H.;Yoon, J.K.;Bae, J.H.;Suk, K.H.;Oh, J.M.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.736-737
    • /
    • 2007
  • The single point bonding in underground transmission system can induce high voltage on the sheath when ground fault, lightning serge and switching serge occurs, at that time underground cable systems cannot offer a return path of fault current. Accordingly if fault current, which cannot return to ground, flows at the single point bonding, high voltage can be induced in SVL and that voltage can cause aging and breakdown of SVL. Therefore this paper study on the effect of parallel ground conductor at the single point bonding when ground fault and lightning serge occurs by using ATPDraw.

  • PDF

Comparison and Analysis of Return Current Measurement Values on High Speed Line (고속선 귀선전류 측정값 비교 및 분석)

  • Kim, Yong-Kyu;Kim, Ju-Yeop;Oh, Seh-Chan;Baek, Jong-Hyun;Yoon, Yong-Ki;Kwak, Woo-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.877-884
    • /
    • 2017
  • A method of common earth, which is proposed by French Railway(SNCF) and is applied to high speed railway, minimizes the effect of the traction return current from tracks so that trackside electric devices can be protected and operation and maintenance staffs are kept out from injury in an electric railway environment. According to it, all the new domestic electric railway lines are replaced from existing individual earth method to the common earth method. In this paper, we analyze the correlation between common earth method and traction return current to prove whether the common earth has surely contributed to minimize the effect of the traction return current. The analysis was done based on the measurement of the traction return current at the domestic high speed railway line.

A Study on the Real Time Measuring Technique of Stray Current by Using Return Current Ratio in the DC Railway System (직류급전시스템에서의 귀환전류 변화비를 이용한 표유전류 실시간 감시기법에 관한 연구)

  • Jung, Ho-Sung;Park, Young;Kim, Hyeng-Chul;Min, Myung-Hwan;Shin, Myong-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.892-898
    • /
    • 2011
  • In DC electric railways, while an electric rail car is driving, a part of the working current returned to the substation through rails leaks into the ground. Such a stray current causes railway facilities and metal objects to corrode electrolytically. Therefore, change of stray current needs to be monitored constantly. But so far in domestic, the research on stray current measuring techniques and system adaption are insufficient. To estimate stray current, this paper addresses a method of monitoring the return current that is returned into the negative pole of the substation in real time.

Analysis of Return Current by Common Earth on Electrical Line of the Gyeongbu Line (경부선 전철화 구간에서의 공동접지에 의한 귀선전류 분석)

  • Kim, Yong-Kyu;Baek, Jong-Hyen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4968-4974
    • /
    • 2010
  • Electrical Railroads provide electric power, which can operate vehicles, via feeder wires. And the supplied current returns to the transformer substation through lines and ground net. In domestic cases, the configuration of ground net affecting such a return current mostly uses an exclusive earth method. However, along with the introduction to Gyeongbu HSL(High Speed Line), the concept of Common Earth was applied to Electrical Railroads. In this paper, based on the return currents analyzed to be measured in the electrified sections for the operation of High Speed Rails in existing lines, we analyze the relations between earth methods and return currents in electrified sections. For analysis, we utilize the measured values of return currents measured in track circuits in Gyeongbu HSL, and predictive values of those compared to the earth methods between Gyeongbu HSL and the existing electrified sections.

Analysis of Return Current for Rolling Stock Operation on Electrical Railroads (전기철도 구간에서의 철도차량 운행에 따른 귀선전류 분석)

  • Baek, Jong-Hyen;Kim, Yong-Kyu;Oh, Seh-Chan;Jo, Hyun-Jeong;Lee, Kang-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4112-4118
    • /
    • 2011
  • Electrical Railroads provide electric power, which can operate vehicles, via feeder wires. And the supplied current returns to the transformer substation through lines and ground net. The return current, related to signal, power and power line, and track circuit systems, is one of the most important component in the electric railway. Therefore, to prevent system faults and breakdown according to unbalance and overcurrent of the return current, various and detailed analyses for the return current are needed. In the paper, we present measurement and analysis manners in real environment and evaluate its safety. For analysis, we utilize the measured values of return currents measured in track circuits in electric railway. we expect that this research plays a key role to the related fields.

On-site Investigation of the Stray Current Condition in DC-Powered Subway System (지하철 직류 급전시스템의 표유전류 실태조사)

  • Ha, Yoon-Cheol;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Goo;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.373-375
    • /
    • 2003
  • The subway, a typical electrified transit, is operated by the 1500 V DC-powered system with the overhead positive feeder and the rails negative return. This return path would bring about considerable stray current circuits, that is, from the bottom of rails to sell and then to the station ground, unless the rail-to-soil resistance is sufficiently high. The stray current can cause electrolytic corrosion of subway metallic structures and adjacent underground utilities. In this paper, we reports on-site investigation of the stray current condition, especially influenced by drainage method. The drainage method including both forced drainage and polarized drainage, extensively adopted as a countermeasure for electrolytic corrosion of underground pipelines, was found out to exert a harmful influence upon rail components as well as the pipelines.

  • PDF